Experiencias en la implementación de las operaciones morfológicas de erosión y dilatación para imágenes binarias empleando vecindades adaptativas
Resumen
La morfología matemática es una herramienta muy poderosa para el procesamiento digital de imágenes. Se plantea que la morfología variable en el espacio muestra mejores resultados que la invariante. Existen varias morfologías variables en el espacio y se diferencian en la forma de asignar el elemento estructurante a cada píxel. Entre estas está la de vecindades adaptativas, que usa los conceptos de función de semejanza y nivel de tolerancia que permiten que el elemento estructurante asignado a cada píxel se ajuste a las características de la vecindad de este y varíen en forma y tamaño. La función de semejanza le asigna a cada píxel un valor real, que puede ser: iluminación, contraste, curvatura, etc. En este trabajo se implementan en MatLab la erosión y dilatación de la morfología de vecindades adaptativas. Las imágenes se procesan con las operaciones estándar de MatLab y con las implementadas en el trabajo, para observar similitudes y diferencias.
Descargas
Número
Sección
Licencia
- Los autores que publican en esta revista están de acuerdo con los siguientes términos: Los autores conservan todos los derechos de autor y garantizan a la revista el derecho de ser la primera en publicar el trabajo.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
- Los contenidos de la revista se distribuyen bajo una licencia Creative Commons Attribution-NonCommercial 4.0. Esto significa que se permite su copia y distribución por cualquier medio, siempre que mantenga el reconocimiento de sus autores y no se haga uso comercial de las obras. La licencia completa puede consultarse en:
https://creativecommons.org/licenses/by/4.0/deed.es_ES