New Missing Features Mask Estimation Method for Speaker Recognition in Noisy Environments
Resumen
Currently, many speaker recognition applications must handle speech corrupted by environmental additive noise without having a priori knowledge about the characteristics of noise. Some previous works in speaker recognition have used Missing Feature (MF) approach to compensate for noise. In most of those applications the spectral reliability decision step is done using the Signal to Noise Ratio (SNR) criterion. This has the goal of enhancing signal power rather than noise power, which could be dangerous in speaker recognition tasks, because useful speaker information could be removed. This work proposes a new mask estimation method based on Speaker Discriminative Information (SDI) for determining spectral reliability in speaker recognition applications based on the MF approach. The proposal was evaluated through speaker verification experiments in speech corrupted by additive noise. Experiments demonstrated that this new criterion has a promising performance in speaker verification tasks.
Descargas
Número
Sección
Licencia
- Los autores que publican en esta revista están de acuerdo con los siguientes términos: Los autores conservan todos los derechos de autor y garantizan a la revista el derecho de ser la primera en publicar el trabajo.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
- Los contenidos de la revista se distribuyen bajo una licencia Creative Commons Attribution-NonCommercial 4.0. Esto significa que se permite su copia y distribución por cualquier medio, siempre que mantenga el reconocimiento de sus autores y no se haga uso comercial de las obras. La licencia completa puede consultarse en:
https://creativecommons.org/licenses/by/4.0/deed.es_ES