Obtención de patrones en forma de predicados difusos con un enfoque multiobjetivo: dos variantes
Palabras clave:
Minería de Datos, Reconocimiento de Patrones, Predicados Difusos, Optimización MultiobjetivoResumen
FuzzyPred es un algoritmo de aprendizaje no supervisado que permite obtener patrones representados como predicados difusos en forma normal a partir de los datos. Este método se utiliza para resolver una tarea descriptiva donde no se conoce a ciencia cierta qué tipo de relaciones se van a encontrar. Se trata de encontrar patrones que describan los datos y sus relaciones. Debido al gran conjunto de soluciones o espacio de búsqueda que puede tener, fue modelado como un problema de optimización, donde se aplican las metaheurísticas como vía de solución para encontrar buenas soluciones. FuzzyPred brinda como resultado un conjunto de predicados, evaluados en cada una de las medidas de calidad, aunque solo optimiza una de estas medidas. Este trabajo analiza vías para enfocar FuzzyPred como un problema de optimización multiobjetivo. Por esto, se introducen en el problema dos de las técnicas principales de optimización multiobjetivo: la técnica basada en Pareto (o multiobjetivo puro) y la de los factores ponderados. Se realiza un estudio experimental comparativo entre ambas técnicas en este problema para conocer la eficacia de estas técnicas. Los resultados en varias bases de datos internacionales demuestran que se obtienen mejores resultados con la técnica multiobjetivo puro.
Descargas
Publicado
Número
Sección
Licencia
- Los autores que publican en esta revista están de acuerdo con los siguientes términos: Los autores conservan todos los derechos de autor y garantizan a la revista el derecho de ser la primera en publicar el trabajo.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
- Los contenidos de la revista se distribuyen bajo una licencia Creative Commons Attribution-NonCommercial 4.0. Esto significa que se permite su copia y distribución por cualquier medio, siempre que mantenga el reconocimiento de sus autores y no se haga uso comercial de las obras. La licencia completa puede consultarse en:
https://creativecommons.org/licenses/by/4.0/deed.es_ES