Propuesta para la monitorización de estados de sedación en señales electroencefalográficas
Palabras clave:
Máquinas de Aprendizaje, Estados de Sedación, Señales ElectroencefalográficasResumen
Durante un procedimiento quirúrgico es esencial inducir al paciente estados de inconsciencia, amnesia, analgesia y relajación muscular, sin embargo, debido a la inexactitud en la monitorización de la anestesia se reportan casos de despertar intraoperatorio. A causa de la incidencia de este fenómeno, el Centro de Estudios de Neurociencias, Procesamiento de Imágenes y Señales en la Universidad de Oriente, Cuba, lleva a cabo la implementación de un prototipo de monitor de anestesia basado en el reconocimiento automático de estados de sedación en las señales electroencefalográficas usando técnicas de Inteligencia Artificial. Para alcanzar el objetivo propuesto se evaluó el desempeño de un clasificador Naive Bayes y tres Máquinas de Aprendizaje: Redes Neuronales Artificiales con cinco topologías diferentes, Sistemas de Inferencia Difusa basada en Redes Adaptativas y las Máquinas de Soporte Vectorial para reconocer tres estados de sedación caracterizados por nueve parámetros de potencia obtenidos a partir del espectro de frecuencia de las señales registradas por los canales electroencefalográficos frontales F4 y Fz. Como resultados de los experimentos se reconocieron los estados de Sedación Profunda, Sedación Moderada y Sedación Ligera con una Exactitud de 96.12%, 90.06% y 90.24% respectivamente usando las Máquinas de Soporte Vectorial y los registros del canal electroencefalográfico F4.
Descargas
Publicado
Número
Sección
Licencia
- Los autores que publican en esta revista están de acuerdo con los siguientes términos: Los autores conservan todos los derechos de autor y garantizan a la revista el derecho de ser la primera en publicar el trabajo.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
- Los contenidos de la revista se distribuyen bajo una licencia Creative Commons Attribution-NonCommercial 4.0. Esto significa que se permite su copia y distribución por cualquier medio, siempre que mantenga el reconocimiento de sus autores y no se haga uso comercial de las obras. La licencia completa puede consultarse en:
https://creativecommons.org/licenses/by/4.0/deed.es_ES