Implementación mediante hardware de una Red Neuronal Artificial para Reconocimiento de Caracteres
Resumen
En el presente trabajo se abordan temas de interés relacionados con la implementación de Redes Neuronales Artificiales (RNAs) en hardware reconfigurable. Para alcanzar dicho fin, se desarrolló una aplicación para el Reconocimiento de Caracteres, utilizando en el proceso de clasificación una red de tipo Perceptrón Multicapa (Feed-Forward Backpropagation). Los primeros pasos realizados consistieron en la creación, entrenamiento y simulación de dicha red. Para esto, se empleó la Interfaz Gráfica de Usuario (IGU) que ofrece el toolbox de Redes Neuronales de Matlab. La implementación hardware de la RNA, se realizó mediante la traducción del modelo computacional a un modelo sintetizable en hardware, el cual es descrito empleando un flujo de diseño basado en modelos, que se apoya en el entorno Matlab/Simulink y la herramienta System Generator de Xilinx. La implementación física se llevó a cabo empleando la tarjeta de desarrollo Atlys de la compañía Digilent. El trabajo está dirigido al análisis de los principales aspectos a tener en cuenta a la hora de llevar a cabo la implementación hardware de una RNA en FPGA y la metodología a seguir para alcanzar dicho fin, y que constituyen las principales novedades de este trabajo.Descargas
Publicado
2015-07-01
Número
Sección
Artículos
Licencia
- Los autores que publican en esta revista están de acuerdo con los siguientes términos: Los autores conservan todos los derechos de autor y garantizan a la revista el derecho de ser la primera en publicar el trabajo.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
- Los contenidos de la revista se distribuyen bajo una licencia Creative Commons Attribution-NonCommercial 4.0. Esto significa que se permite su copia y distribución por cualquier medio, siempre que mantenga el reconocimiento de sus autores y no se haga uso comercial de las obras. La licencia completa puede consultarse en:
https://creativecommons.org/licenses/by/4.0/deed.es_ES