Método para detección de estados estacionarios: aplicación a unidades de generación eléctrica
Resumen
La detección de ventanas o intervalos en los que un proceso continuo esté operando en un estado estacionario es útil para la monitorización a largo plazo y en especial cuando se tienen modelos de estado estacionario que están siendo usados para la optimización del proceso. En el presente trabajo se presenta un método, bajo el nombre de sigma gamma, basado en ventanas deslizantes, que mejora significativamente los algoritmos existentes. Combina algoritmos basados en el análisis de la desviación estándar de las mediciones con el método de las medias móviles y puede aplicarse no sólo a mediciones contaminadas con ruido blanco; sino también sobre series temporales afectadas por ruido coloreado. Se evalúa su desempeño comparándolo con dos de los métodos más recientes. Las pruebas indican que para los diferentes niveles y tipos de ruido analizados el método propuesto ofrece una reducción estadísticamente significativa de los errores de Tipo I y de Tipo II. Las series temporales que sirven de base a los experimentos de evaluación están relacionadas con los tipos de respuestas esenciales bajo las que operan las unidades de generación eléctrica.Descargas
Publicado
2014-05-28
Número
Sección
Artículos
Licencia
- Los autores que publican en esta revista están de acuerdo con los siguientes términos: Los autores conservan todos los derechos de autor y garantizan a la revista el derecho de ser la primera en publicar el trabajo.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
- Los contenidos de la revista se distribuyen bajo una licencia Creative Commons Attribution-NonCommercial 4.0. Esto significa que se permite su copia y distribución por cualquier medio, siempre que mantenga el reconocimiento de sus autores y no se haga uso comercial de las obras. La licencia completa puede consultarse en:
https://creativecommons.org/licenses/by/4.0/deed.es_ES