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RESUMEN / ABSTRACT

Los motores trifasicos de induccidn constituyen un elemento central en numerosos procesos industriales. Este trabajo propone
un enfoque de diagndstico de fallos no invasivo para motores trifasicos de induccion que utiliza exclusivamente sefiales de
corriente por fase. Se evallan dos estrategias de Inteligencia Artificial: (i) un método basado en descriptores estadisticos y
frecuenciales combinado con un clasificador Random Forest, y (ii) una Red Neuronal Convolucional con Autoencoder
(AE+CNN), que modela el comportamiento saludable del motor y detecta desviaciones mediante errores de reconstruccion.
El procedimiento de deteccion de fallos contempla la transformacion y segmentacion de las sefiales trifasicas, el analisis de
caracteristicas temporales y frecuenciales, el entrenamiento y validacion de ambos modelos, asi como la evaluacion de su
robustez ante distintas condiciones operativas. Los experimentos se desarrollan utilizando datos reales de una planta piloto
con dos bombas centrifugas accionadas por motores de induccion y variadores de velocidad. Los resultados permiten valorar
la eficacia comparativa de ambos enfoques y su potencial para una implementacién practica, econdmica y escalable en
entornos industriales.

Palabras claves: motores trifasicos de induccidn, corriente por fase, deteccion de fallos, Random Forest, AE+CNN

Three-phase induction motors are a key component in numerous industrial processes. This work proposes a non-invasive
fault-diagnosis approach for three-phase induction motors that relies exclusively on per-phase current signals. Two
Artificial Intelligence strategies are evaluated: (i) a method based on statistical and frequency-domain descriptors
combined with a Random Forest classifier, and (ii) a Convolutional Neural Network with an Autoencoder (AE+CNN),
which models the motor’s healthy behavior and detects deviations through reconstruction errors. The fault-detection
procedure includes the transformation and segmentation of the three-phase current signals, analysis of time- and
frequency-domain features, training and validation of both models, and assessment of their robustness under different
operating conditions. Experiments are conducted using real data from a pilot plant equipped with two centrifugal pumps
driven by induction motors and variable-speed drives. The results demonstrate the comparative effectiveness of both
approaches and their potential for practical, cost-efficient, and scalable implementation in industrial environments.
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A non-intrusive analysis of anomalous conditions in three-phase motors using current signals and Artificial Intelligence
techniques

1-INTRODUCCION

Debido a su elevada robustez y versatilidad para operar en diversos entornos, los motores trifasicos de induccién constituyen
el ndcleo de numerosos procesos industriales. Atender oportunamente los fallos eléctricos y mecanicos que tienen lugar estos
motores es crucial para mantener la eficiencia operativa y evitar paradas no planificadas con alto impacto econédmico [1,2].
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Entre los fallos eléctricos mas comunes se encuentran los cortocircuitos entre espiras, originados por la degradacion del
aislamiento y responsables de aproximadamente el 30 %—40 % de las averias en el estator. Este deterioro suele estar asociado
a humedad, temperaturas elevadas y contaminacion por aceite o suciedad, factores que comprometen las propiedades
dieléctricas del aislamiento y favorecen los cortocircuitos. Para detectar de forma temprana este tipo de degradacion, se
emplean transformadores de corriente de alta sensibilidad (HSCT), capaces de medir y descomponer la corriente de fuga en
sus componentes resistiva y capacitiva, proporcionando una estimacion fiable del estado del aislamiento [2,3]. En cuanto a
los fallos mecéanicos, se originan principalmente por vibraciones, desalineaciones, tensiones de correas, y condiciones
operativas inadecuadas. Por otro lado, se estima que alrededor del 70 % de las averias mecanicas en los motores estan de
alguna manera relacionadas al desgaste de los rodamientos, y éstos a menudo pueden desencadenar fallos secundarios en el
motor como la tipica rotura de las barras del rotor o el desplazamiento del rotor respecto al estator [3]. La alta incidencia y el
costo asociado a los fallos eléctricos y mecénicos en los motores eléctricos justifican, por tanto, la necesidad de desarrollar
enfoques de diagndstico mas eficientes, econémicos y facilmente integrables en entornos industriales [1-6]. Sin embargo, tal
como se muestra en la Tabla 1, las técnicas tradicionales para la deteccion de tales fallos suelen requerir sensores adicionales
o0 intervenciones en la maquina eléctrica, lo cual incrementa el costo y limita su aplicacion de manera en grandes plantas
industriales [7]. En este contexto, resulta especialmente atractivo entonces desarrollar soluciones basadas en sefiales eléctricas
de la propia operacion del motor. Siendo asi, diversos estudios demuestran que las perturbaciones mecénicas y eléctricas se
manifiestan en la sefial de corriente, lo que abre la posibilidad de realizar un diagnéstico basado en una variable ampliamente
disponible y de adquisicion no invasiva.

Tabla 1
Enfoques de deteccion de fallos en motores eléctricos utilizando las técnicas tradicionales y sefiales eléctricas.
Técnicas tradicionales (vibracion, Métodos basados en sefiales eléctricas (corriente,
temperatura, acustica) tension, potencia)

Ventajas e Muy precisas para fallos mecénicos.
e Tecnologias consolidadas.
Alto nivel de madurez industrial.

No intrusivos y de bajo costo.

Usan sensores ya disponibles en tableros y SCADA.
Adecuados para monitoreo en linea.

Escalables para grandes plantas.

Desventajas

Menor sensibilidad ante fallos mecéanicos
e Requiere procesar armonicos.
e A veces insuficiente para fallas puramente mecanicas.

Elevado costo por sensores dedicados.
Instalacion intrusiva.

Necesidad de calibracion y mantenimiento.
Poca escalabilidad.

A partir de esto, el presente trabajo propone un enfoque de deteccion de fallos en motores eléctricos de jaula de ardilla donde
se utiliza exclusivamente las sefiales de corriente por fase, medida de forma no invasiva desde la acometida del motor. Este
enfoque evita la instalacion de sensores o modificaciones adicionales en la maquina eléctrica, posibilitando una
implementacion rapida, econémica y compatible con ambientes industriales reales [7, 8]. Desde la perspectiva, la solucién
propuesta evalla y compara dos estrategias de Inteligencia Artificial para el diagnéstico de los fallos considerando el analisis
de las sefiales de corriente eléctrica en el motor. EI primer enfoque que es evaluado considera las variables estadisticas y las
mediciones en frecuencia que caracterizan el comportamiento del motor para identificar los fallos mediante un clasificador
Random Forest. En el segundo enfoque evaluado, se utilizan fragmentos temporales (ventanas) de la sefial de corriente para
aprender el patron de operacién normal mediante una Red Neuronal Convolucional con Autoencoder (AE+CNN), que genera
sefiales residuales para describir desviaciones respecto al comportamiento saludable del motor. De esta manera se logran
evaluar métodos basados en caracteristicas explicitas y métodos basados en aprendizaje directo de la sefial, respectivamente.
En este sentido, Random Forest proporciona robustez ante ruido y una elevada capacidad para manejar conjuntos de datos
multidimensionales [9]. En tanto, AE+CNN permite modelar distribuciones normales de funcionamiento detectando
desviaciones respecto a la operacion normal del motor a partir del error de reconstruccidn, siendo particularmente Util para
capturar relaciones no lineales y caracteristicas ocultas en las sefiales de corriente [10, 11].

El objetivo general de este trabajo es evaluar la viabilidad de Random Forest y AE+CNN para detectar fallas operativas en
motores eléctricos de jaula de ardilla, considerando exclusivamente sefiales de corriente. Para validar la efectividad de la
propuesta se consideran condiciones representativas de los entornos industriales, pero sin depender de sensores de vibracion
y temperatura. Para ello se establecen cuatro pasos fundamentales: (i) transformacion de sefiales de corriente trifasica y
segmentacion en ventanas temporales, (ii) analisis de descriptores en el dominio del tiempo y la frecuencia, (iii) entrenamiento
y validacion de los modelos de clasificacion supervisada Random Forest y AE+CNN, y (iv) evaluacion de robustez del modelo
predictivo frente a diferentes condiciones operativas. La efectividad de Random Forest y AE+CNN se evalGa utilizando los
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datos presentados por [12], y que describen la operacion de dos bombas centrifugas, impulsadas por motores de induccion
con variadores de velocidad.

El presente trabajo se organiza de la siguiente manera. La Seccidn 2 realiza una breve descripcion del caso de estudio y los
datos historicos utilizados. Los procedimientos con Random Forest y AE+CNN se abordan en la Seccién 3. La Seccién 4 se
centra en el analisis y discusion de los resultados, enfatizando algunos aspectos relevantes del disefio experimental. Finalmente
se realizan las conclusiones del trabajo y lineas futuras.

2.- CASO DE ESTUDIO Y TRANSFORMACION DE DATOS

El caso de estudio utilizado en esta investigacion fue presentado por Bruinsma, (2024) [12], y cuenta con datos experimentales
de dos bombas centrifugas, impulsadas por motores de induccion con variadores de velocidad. La informacién técnica de la
instalacion piloto y los datos de chapa de los motores se puedes visualizar en la Fig. 1y Tabla 2, respectivamente. El conjunto
de datos obtenido de este sistema recoge las lecturas del comportamiento del estado saludable de cada motor y diez fallos
simulados: (1) rodamientos defectuosos, (2) apoyos flojos, (3) impulsor averiado, (4) corto circuito del estator, (5) rotura de
barra del rotor, (6) desalineamiento, (7) desbalance, (8) degradacion del acoplamiento, (9) cavitacién, y (10) eje doblado. Para
cada tipo de fallo se recopilan datos con distintos niveles de severidad y velocidades de funcionamiento para el motor. Todas
las condiciones incluyen datos de vibracion, corriente y tension.

Figural
Planta Piloto [12]: (1) motor, (2) bomba, (3) salida de agua, (4) entrada de agua, (5) valvula, y (6) variador de frecuencia (VFD).

Los datos de vibracion son obtenidos mediante acelerdmetros, y las sefiales eléctricas se obtienen a partir de pinzas de corriente
colocadas en cada fase. La medicion de las variables involucradas se realiza cada cinco minutos y se almacenan en archivos
CSV. Considerando esta configuracidon un total de cinco archivos CSV equivalentes a cinco canales para los datos de vibracion
y seis archivos CSV equivalentes a seis canales para los datos eléctricos se construyen para su analisis. Cada archivo CSV
contiene seis columnas, comenzando por la informacién temporal y seguida por la informacion de las variables fisicas
medidas.

Tabla 2
Detalles y datos de chapa de los motores eléctricos [12]
Nr. Etigueta Técnica Polos Umax(V)/Imax(A) kW @ PRM Rodamientos
2 MG160MA4042-H3 4 380-415/23.4-22.4 11 @ 1470 6309.C4
4 MG180MB2-48-F1 2 380-415/43.5 22 @ 2950 6310.C4
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En el caso de los datos eléctricos, los seis archivos CSV contienen 300000 muestras por columna, siendo los tres primeros
canales las corrientes por fase y los canales restantes la tension por fase. Es valido destacar que, en el presente estudio, se
utilizaron solamente los datos eléctricos del Motor-2 que contiene registros en diferentes velocidades de operacion (50%, 75%
y 100%). Asimismo, tal como se observa en la Fig. 2, el analisis experimental se ha limitado al estudio de tres fallos y el
estado de operacion saludable. Los fallos considerados son: (1) rotura de barras del rotor, (2) contaminacion de rodamientos,
y (3) cortocircuito en el estator. La deteccion de estos eventos andmalos se considera de suma importancia debido su alta
incidencia en los motores de induccién que se utilizan en entornos industriales. A modo de ejemplo, la Fig. 2 ilustra las
diferencias en las caracteristicas que asume la corriente de fase para los estados de operacién antes mencionados. Como se
observa en la Fig. 2(a), el estado de operacién saludable del motor (sin fallos), se caracteriza por una sefial sinusoidal suave
y simétrica. Por otro lado, como se aprecia en la Fig. 2(b), cuando existen rodamientos contaminados la sefial de corriente
muestra ligeras irregularidades por las vibraciones o micro-oscilaciones que se originan del desgaste y las particulas en los
rodamientos. En tanto, la Fig. 2(c) muestra la sefial de corriente ante el fallo en el estator cortocircuitado. En este caso la sefial
se caracteriza por asimetrias y desfase en la amplitud, ya que los cortocircuitos en el estator suelen generar desequilibrios
magnéticos que afectan a la forma de la corriente. Por Gltimo, en la Fig. 2(d), se aprecia una modulacion en la envolvente con
variaciones ciclicas en la amplitud que son tipicas del fendmeno conocido como frecuencia de deslizamiento que ocurre
debido a la rotura de barras del rotor. Para realizar el estudio con los datos de este caso de estudio, los conjuntos de
entrenamiento (60%), prueba (20%) y validacion (20%) se generan utilizando una semilla aleatoria que garantiza no caer en
$esgos por secuencia o posicion dentro del data set. Ademas, se implementd un enfoque de validacion externa para el modelo
predictivo considerando la disponibilidad de datos de operacién normal en tres diferentes condiciones operativas (saludablel,
saludable? y saludable3). Esta metodologia permite evaluar la capacidad de generalizacion del modelo predictivo teniendo en
cuenta registros de operacion sin fallos que son obtenidos bajo diversas configuraciones de acoplamiento entre el motor y la
bomba. Esta estrategia de seleccién aleatoria se fundamenta en el supuesto de que los datos representan muestras
independientes e idénticamente distribuidas. Este supuesto es comun en problemas de aprendizaje automatico y analisis de
series temporales estacionarias, donde se considera que los datos provienen de una misma distribuciéon y no estan
correlacionados entre si de forma significativa [13], y resulta valido siempre que se garanticen condiciones operativas
constantes durante la adquisicion, asi como la independencia temporal entre las columnas consecutivas del conjunto de datos
histéricos. Las distintas configuraciones para el estado saludable (ejemplo, saludable 1 vs. saludable 2) permiten emular
condiciones reales de variabilidad estructural del sistema, alineandose con el concepto de validacion externa (out-of-
distribution testing) [14].

2.1 SEGMENTACION TEMPORAL EN VENTANAS

La segmentacion temporal de los datos brutos contenidos en los conjuntos de entrenamiento, prueba y validacion se realiza
para transformar las sefiales de corriente en unidades de analisis compatibles que seran las entradas a los modelos de
aprendizaje automatico utilizados. En el caso del modelo Random Forest, las sefiales fueron divididas en ventanas de 1
segundo de duracion, lo que equivale a 20.000 muestras por ventana, dada la frecuencia de muestreo del sistema de 20 kHz.
Este tamafio de ventana provee un equilibrio entre resolucion temporal y riqueza espectral que permite capturar maltiples
ciclos de la sefial, facilitando la identificacion de arménicos, distorsiones y transitorios relevantes para la clasificacion de los
fallos. Por otro lado, en AE+CNN se opt6 por un enfoque de mayor granularidad utilizando ventanas de 25 microsegundos,
correspondientes a 500 muestras por segmento. A diferencia del modelo Random Forest, el uso de ventanas mas pequefias
para el AE+CNN permiten captar variaciones locales mas sutiles en el comportamiento normal del motor. En ambos casos,
las ventanas fueron generadas sin solapamiento para evitar la dependencia entre muestras consecutivas, y preservar la
integridad del proceso de evaluacién. Al no incluir solapamiento entre ventanas se evitan muestras demasiado similares, lo
cual podria inducir fendmenos de sobreajuste y comprometer la generalizacion del modelo. Esta precaucion esta respaldada
por estudios como el de Bengio (2013) [15], quienes advierten sobre los riesgos de dependencia entre instancias en modelos
de representacion profunda. Esta estrategia de segmentacion diferenciada permite adaptar el formato de entrada a las
necesidades especificas de cada arquitectura, optimizando tanto la extraccion de caracteristicas como el aprendizaje de
patrones relevantes en los datos. El proceso de segmentacién para Random Forest generd unas 2.025 ventanas para
entrenamiento, 675 ventanas para prueba, y 540 ventanas para validacion. En el caso de AE+CNN, se obtuvieron 81.000
ventanas para entrenamiento, 27.000 ventanas para prueba, y 21.600 ventanas para la etapa de validacion.
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Figura 2
Operacion del motor [12]: (a) saludable, (b) contaminacion de rodamientos, (c) cortocircuito en estator, y (d) rotura de barras.

2.2 CARACTERISTICAS EN EL DOMINIO DEL TIEMPO Y FRECUENCIA

Para extraer caracteristicas combinadas en el dominio del tiempo y la frecuencia se consideraron métricas estadisticas como
la media, el valor absoluto medio, la raiz cuadrada media (RMS), la desviacion estandar, la curtosis, la asimetria y los valores
maximos y minimos. Las caracteristicas en frecuencia se obtuvieron mediante la Transformada Rapida de Fourier (FFT),
dividiendo el espectro en bandas de 100 Hz y calculando en cada una de ellas la frecuencia dominante, la magnitud maxima,
la magnitud media y la desviacion estandar. También se consideraron las caracteristicas en el dominio de la frecuencia, pero
omitiendo por completo las métricas del dominio temporal. Esta variante permite evaluar si las componentes espectrales por
si solas contienen suficiente informacion discriminativa para el diagndstico de las fallas, ademas de explorar la posibilidad de

reducir la dimensionalidad del espacio de caracteristicas y simplificar el flujo de procesamiento sin sacrificar el rendimiento
predictivo, como se muestra en la Tabla 3.

Tabla 3
Comparacion de enfoques de extraccion de caracteristicas.

Enfoque Descripcion Tipo de caracteristicas Objetivo principal
Tiempo + Extrae caracteristicas estadisticas del dominio Media, RMS, curtosis, Capturar maxima
frecuencia temporal y espectrales por bandas en el dominio de skewness + FFT por bandas informacion de forma

la frecuencia. complementaria.
Solo Extrae Unicamente caracteristicas espectrales por FFT: frecuencia dominante, Evaluar la capacidad
frecuencia bandas aplicando la FFT. magnitudes por banda discriminativa de
componentes espectrales




Guillermo L. Zapata Alvarez, Rafael Andrade Cartegoso, Jos¢ M. Bernal de Lazaro
RIELAC, Vol. 46 (Publicacion Continua):e9713 (2025) ISSN:1815-5928

3.- PROCEDIMIENTOS CON RANDOM FOREST / AE+CNN

3.1 Principios de operacion del clasificador Random Forest

Random Forest es un algoritmo de bagging que combina un conjunto de arboles de decision, cada uno entrenado sobre una
muestra aleatoria obtenida mediante bootstrap, lo que permite mejorar la estabilidad y precision del modelo. En cada nodo,
la division se realiza considerando un subconjunto aleatorio de caracteristicas que reduce la correlacion entre arboles y
promueve la diversidad estructural. Para clasificacién, la prediccion final se obtiene mediante votacion mayoritaria. El
algoritmo reduce la varianza del estimador respecto a una sola estructura arbdrea sin aumentar excesivamente el sesgo, dado
que la combinacion de clasificadores débiles no correlacionados permite aproximar la funcién objetivo con menor error
generalizado. La importancia de las caracteristicas suele estimarse mediante la disminucion media del indice Gini, lo que
proporciona informacion sobre la contribucion relativa de cada variable al modelo. En conjunto, Random Forest constituye
un estimador robusto, no paramétrico y altamente paralelo, adecuado para datos heterogéneos y escenarios con ruido o
interacciones complejas entre variables.

3.2 Principios de operacion del clasificador AE+CNN

El modelo AE+CNN combina un Autoencoder no supervisado con una red convolucional para la extraccion jerarquica de
caracteristicas y clasificacion. EI Autoencoder se compone de un codificador fz: X — Z que mapea los datos de entrada x €
R™ a un espacio latente z € R™ m < n, y un decodificador gg: Z - X que reconstruye la entrada X = go(fs(x)),
minimizando la funcién de reconstruccion £,.. = ||x — £||2. La representacion latente z es posteriormente alimentada a una
red neuronal que aplica las operaciones de convolucion y pooling para extraer patrones espaciales o temporales complejos,
seguido de capas totalmente conectadas y una funcion de activacion softmax para clasificacion. La combinacion AE+CNN
permite que la red aprenda representaciones latentes compactas y eliminando ruido en los datos y optimizando
simultdneamente la reconstruccidn y la capacidad de discriminacion supervisada, lo que conlleva a obtener un modelo robusto
para deteccién de anomalias, clasificacion de fallos y analisis de sefiales de alta dimension.

3.3 Implementacion de las técnicas de inteligencia computacional

Una vez se cuenta con las caracteristicas de tiempo y frecuencia que describen el estado operativo del motor, se pasa al
entrenamiento y validacién de los modelos Random Forest y AE+CNN. Como primer paso, se procede a la normalizacién de
las matrices de caracteristicas a fin de evitar diferencias de escala entre variables que afecten negativamente el desempefio de
los predictores. Posterior a esto, se codifican numéricamente las etiquetas de clase a través de LabelEncoder, y se aplica One-
Hot Encoding para la clasificacion multiclase con salidas probabilisticas, garantizando la compatibilidad softmax. Cabe
destacar que las métricas utilizadas para validar el desempefio de ambos modelos predictivos se obtienen a partir de la matriz
de confusién y los informes de clasificacidn por clase, siendo muy relevantes las métricas de exactitud global y puntaje macro
de F1-score.

Las Figs. 3 y 4 ilustran el flujo de trabajo seguido en la implementacién de los modelos Random Forest y AE+CNN,
respectivamente.
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Figura 3
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Flujo de trabajo seguido en la implementacion del modelo Random Forest
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Flujo de trabajo seguido en la implementacion del modelo AE+CNN.
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En el caso del modelo Random Forest el entrenamiento se realiz6 a partir de las caracteristicas previamente extraidas de las
sefiales, considerando conjuntamente el dominio del tiempo y frecuencia. En este sentido, Random Forest es particularmente
atil puesto que permite trabajar directamente sobre las caracteristicas extraidas, incluso cuando estas tienen escalas diferentes
o presentan colinealidad parcial. Esto reduce significativamente la necesidad de preprocesamiento y lo vuelve méas robusto a
cambios inesperados en las condiciones del sistema. Ademas, su estructura basada en maltiples arboles independientes le
permite procesar eficientemente el ruido y los valores atipicos, dos elementos que son frecuentes en sefiales eléctricas reales
capturadas en entornos industriales. Los arboles individuales que componen el bosque no estan fuertemente influenciados por
valores extremos, ya que el impacto de estos se diluye al agregarse las predicciones en conjunto. Esta capacidad de
generalizacion también se ha observado empiricamente en los experimentos realizados, donde se ha logrado mantener una
alta precision en los conjuntos de prueba sin incurrir en un sobreajuste significativo. Cabe destacar que para el modelo Random
Forest se implementd la basqueda aleatoria de los hiperpardmetros intentando minimizar la diferencia del error obtenido para
las etapas de entrenamiento y prueba (overfitting gap< 0.05). Este proceso se realiza de manera iterativa evaluando las
variables con mayor poder predictivo, el nimero de arboles, la profundidad maxima, el minimo de muestras por hoja y por
division.

En el caso de AE+CNN, tal cual se ha mencionado anteriormente, se intenta reconstruir las sefiales correspondientes
exclusivamente al estado saludable del motor eléctrico. La hip6tesis considerada en este caso parte del supuesto de que se
obtendran errores de reconstruccion elevados al identificarse sefiales asociadas a fallas. Acorde con la investigacion de Tomas,
(2021) [16], este procedimiento permite considerar el error o residuo de reconstruccién como un indicador de anomalias.
Siendo asi, la fase de Autoencoder permite aprender la representacion de sefiales normales, y la CNN clasifica estas
representaciones codificadas en diferentes tipos de fallos. Con esta filosofia de trabajo se implement6 una arquitectura de
Autoencoder completamente densa (fully connected) y simétrica, compuesta por capas ocultas de 1024, 512, 256, 128 y 64
neuronas en el codificador, todas con funciones de activacién ReLU. Por otro lado, la representacion comprimida o cuello de
botella (bottleneck) se define como una capa densa de 64 unidades encargada de capturar las caracteristicas latentes esenciales
en la operacion saludable del motor. En la etapa de decodificacion, se replico la estructura en sentido inverso con las mismas
dimensiones, finalizando en una capa de salida lineal del mismo tamafio que la entrada (500), permitiendo reconstruir la sefial
original. EI modelo fue compilado utilizando el optimizador Adam y la funcién de pérdida Mean Squared Error (MSE). El
proceso de entrenamiento se controld mediante el enfoque de Early Stopping, considerando 50 épocas y la funcion de pérdida
sobre el subconjunto de validacion. Una vez finalizado el entrenamiento, el Autoencoder permite reconstruir las sefiales que
describen el estado operativo del motor. Lo cual permite calculan los valores residuos considerando la diferencia punto a
punto entre la sefial original y su reconstruccidn, que representan la entrada para la posterior etapa de clasificacién supervisada.
La Red Neuronal Convolucional (CNN), que forma parte del modelo discriminante, se entrena utilizando los vectores de
residuo generados por el Autoencoder. En el clasificador neuronal se incluyé una capa Conv1D con kernel size de 5, activacién
ReLU, y una capa de batch normalization para estabilizar el proceso de entrenamiento. Tras cada convolucion se aplicé Max
Pooling para reducir la dimensionalidad y extraer las caracteristicas mas representativas, seguido de una capa Dropout con
tasa de 0.3 para prevenir el sobreajuste. Por otro lado, la red incorpora filtros progresivamente, comenzando con 64 y
aumentando hasta 512, lo que permite a la arquitectura detectar patrones complejos y jerarquicos dentro de la sefial. La
arquitectura neuronal implementada también incluye una capa de Global Average Pooling que convierte cada mapa de
activacion convolucional en un Unico valor promedio. Esta capa reduce drasticamente el nimero de parametros, y también
actia como una forma de regularizacién estructural al enfocarse en la informacién global mas robusta de cada canal,
descartando detalles locales ruidosos. A continuacion, se afiade una capa densa de 128 neuronas con activacién RelL.U,
encargada de integrar las caracteristicas extraidas y preparar la informacién para la clasificacion. Finalmente, una capa de
salida con activacion softmax devuelve una distribucion de probabilidad sobre las clases posibles, permitiendo identificar el
tipo de condicion operativa de cada ventana de sefial.

4.- ANALISIS Y DISCUSION DE RESULTADOS

A fin de validar el desempefio de los algoritmos Random Forest y AE+CNN, se consider6 un total de cuatro escenarios que
describen la operacidn sin fallos (Saludable 1, Saludable 2, Saludable 3, y Saludable 4) del motor segun la configuracién de
acoplamiento entre el motor y la bomba. Los datos adquiridos en operacién con fallo: (1) rotura de barras del rotor, (2)
contaminacion de rodamientos, (3) cortocircuito en el estator, y los datos de operacién normal del motor procedentes de las
distintas configuraciones de acoplamiento se combinan para formar los escenarios descritos en la Tabla 4. A continuacién,
se analizan brevemente los resultados alcanzados en cada uno de estos escenarios.
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Tabla 4
Escenarios experimentales considerando la operacion normal con diferentes regimenes de trabajo para motor-bomba.
Escenario Entrenamiento Prueba Validacién
Escenario 1 Saludable 1/ Fallos Saludable 1/ Fallos Saludable 1/ Fallos
Escenario 2 Saludable 1/ Fallos Saludable 1/ Fallos Saludable 2/ Fallos
Escenario 3 Saludable 1/ Fallos Saludable 3/ Fallos Saludable 2/ Fallos
Escenario 4 Saludable 2/ Fallos Saludable 3/ Fallos Saludable 1/ Fallos

4.1 RESULTADOS ALCANZADOS PARA EL ESCENARIO 1

Las Tablas 5y 6 resumen los resultados alcanzados por Random Forest y AE+CNN en el primer escenario. En ambos casos
se esta considerando las etapas de entrenamiento, prueba, y validacion. Ademas, la comparacion se realiza con base en las
métricas de Precision, Sensibilidad y Puntaje de F1-score. En el caso de Random Forest, la Tabla 5 ilustra que se alcanza una
prediccion perfecta durante la etapa del entrenamiento, aunque el desempefio global decae hasta un 5% en las etapas de prueba
y validacion debido que el clasificador confunde los patrones de operacidn normal con la operacion del motor cuando existen
rodamientos contaminados. La Tabla 6 confirma que el modelo AE+CNN también aprende acertadamente los patrones de
fallos relacionados con la rotura de la barra de rotor y cortocircuito en estator. Sin embargo, respecto al clasificador Random
Forest, 1a prediccion utilizando AE+CNN decae significativamente en las etapas de prueba y validacion al confundir patrones
de operacién normal y operacion con rodamientos contaminados. La Fig. 5 utiliza la perspectiva de la matriz de confusién
para ilustrar como Random Forest y AE+CNN se manejan durante el reconocimiento de los patrones asociados estos dos
estados de operacion considerando las etapas de prueba y validacion.

Tabla 5
Desempefio alcanzado (%) por Random Forest en el Escenario 1
Precision Sensibilidad Puntuaje F1
Estado de operacion (Entrenamiento / . (Entrenamiento / Soporte (Entrenamiento /
(Entrenamiento / s s sy s
del motor Prueba / cr s Prueba / Validacion) Prueba/  Validacién)
sl s Prueba / Validacion)
Validacion)
Barra de rotor rota 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 405/ 135/ 135
C"“‘;csltftgfo en 1.00/1.00/ 1.00 1.00/1.00 / 1,00 1.00/1.00 / 1.00 405/135/135
Rodamientos 0.99/0.83/ 0.86 1.00/0.98 /0.96 1.00/0.89 /0.90 405/135/135
contaminados
Saludable 1.00/0.97/0.96 0.99/0.80/0.84 1.00/0.88/0.89 405/135/135
accuracy - - 1.00/0.94/0.95 1620/540/540
weighted avg 1.00/0.95/0.95 1.00/0.94 / 0.95 1.00/0.94/ 0.95 1620/540/540
Tabla 6
Desempefio alcanzado (%) por AE+CNN en el Escenario 1
Precision Sensibilidad Puntuaje F1
(Entrenamiento / . (Entrenamiento / Soporte (Entrenamiento /
Clase (Entrenamiento / S s Sy,
Prueba / R Prueba / Validacion) Prueba/ Validacion)
Sy s Prueba / Validacion)
Validacion)
Barra de rotor rota 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 16200 / 5400 / 5400
C"“‘;csltftgfo en 1.00/1.00 / 1.00 1.00/1.00 / 1.00 1.00/1.00 / 1.00 16200 / 5400 / 5400
Rodamientos 0.82/0.64/0.69 0.77/0.67/ 0.69 0.80/0.66/0.69 16200 / 5400 / 5400
contaminados
Saludable 0.79/0.66/0.69 0.84/0.63/0.69 0.81/0.64/0.69 16200 / 5400 / 5400
accuracy - - 0.90/0.82/0.84 64800 /21600 /21600
weighted avg 0.90/0.82/0.84 0.90/0.82/0.84 0.90/0.82/0.84 64800 /21600 / 21600

(a)
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Matriz de Confusién - Prueba Matriz de Confusién - Validacién
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1000 1000
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0

Matrices de confusidn para etapas de prueba y validacion obtenidas en el escenario 1: (a) Random Forest, (b) AE+CNN.
4.2 RESULTADOS ALCANZADOS PARA EL ESCENARIO 2

Los resultados obtenidos por Random Forest y AE+CNN en el segundo escenario se ilustran en las Tablas 7 y 8. Como en el
caso anterior, se consideran las etapas de entrenamiento, prueba, y validacion. La comparacion también se realiza con base
en las métricas de Precisidn, Sensibilidad y Puntaje de F1-score. La Tabla 7 muestra que en el caso de Random Forest se
mantienen desempefios alentadores en las etapas de entrenamiento y prueba. Sin embargo, en la etapa de validacion, se observa
que Random Forest disminuye significativamente su rendimiento y muestra una respuesta altamente sensible a cambios en el
reglaje del motor indicando numerosas falsas alarmas para los fallos de cortocircuito y barra rota. Por otro lado, la Tabla 8
confirma que el modelo AE+CNN no logra identificar correctamente la condicion de operacidn saludable, clasificando todos
datos de operacion normal erroneamente como fallos. Esto evidencia que el modelo AE+CNN se enfoca demasiado en la
representacion aprendida para operacion saludable y no logra capturar totalmente la variabilidad en los datos. Por demas,
diferenciar entre el estado de operacion saludable y el estado de operacion con rodamientos contaminados sigue siendo el
mayor desafio para el modelo predictor. Este fendmeno se evidencia en la Fig. 6 que ilustra las matrices de confusion obtenidas
para Random Forest y AE+CNN durante el reconocimiento de los patrones en las etapas de prueba y validacion.

10
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Tabla 7
Desempefio alcanzado (%) por Random Forest en el Escenario 2
Precision e Puntuaje F1
Estado de operacion (Entrenamiento / Sens1blhfiad (Entrenamiento / S.O porte
(Entrenamiento / Sy er (Entrenamiento / Prueba/
del motor Prueba / . Prueba / Validacion) s 1 es
sy s Prueba / Validacion) Validacion)
Validacién)
Barra de rotor rota 1.00/1.00/0.71 1.00/1.00/1.00 1.00/1.00/0.83 405/ 135/ 135
Cort‘;cslt;‘;gito en 1.00/1.00/0.62 1.00 / 1.00 / 1.00 1.00/1.00/0.77 405/135/135
Rodamientos 0.99/0.91/ 1.00 1.00/0.98 /0.96 0.99 /0.94 /0.98 405/135/135
contaminados
Saludable 1.00/0.98 /0.00 0.99/0.90/0.00 0.99/0.94/0.00 405/135/135
accuracy - - 1.00/0.97/0.74 1620/540/540
weighted avg 1.00/0.97 / 0.59 1.00/0.97/0.74 1.00/0.97/ 0.64 1620/540/540
Tabla 8
Desempefio alcanzado (%) por AE+CNN en el Escenario 2
Prec1s1?n Sensibilidad Puntua]ef Fl Soporte
(Entrenamiento / . (Entrenamiento / .
Clase (Entrenamiento / s s (Entrenamiento / Prueba /
Prueba / Sy .o Prueba / Validacion) s s
Sy s Prueba / Validacion) Validacion)
Validacion)
Barra de rotor rota 0.99/0.99/0.99 1.00/1.00/1.00 1.00/1.00/0.99 16200 / 5400 / 5400
CO“ZCSE‘;E?O en 1.00/1.00 / 0.50 0.99/0.99 /0.99 1.00/1.00 /0.67 16200 / 5400 / 5400
Rodamientos 0.73/0.67/ 1.00 0.88/0.82/0.81 0.80/0.74 / 0.89 16200 / 5400 / 5400
contaminados
Saludable 0.85/0.77/0.00 0.68/0.59/0.00 0.75/0.67/0.00 16200 / 5400 / 5400
accuracy - - 0.89/0.85/0.70 64800 /21600 /21600
weighted avg 0.89/0.86/0.62 0.89/0.85/0.70 0.89/0.85/0.64 64800 /21600 / 21600

4.3 RESULTADOS ALCANZADOS PARA EL ESCENARIO 3

En este escenario los conjuntos de datos de operacion normal utilizados en entrenamiento, prueba y test son todos diferentes.
Segun la Tabla 4, estos datos caracterizan la operacion saludable del motor en diferentes configuraciones o regimenes entre
el motor y la bomba. A diferencia del segundo escenario, el desempefio de Random Forest y AE+CNN decaen juntos para las
etapas de prueba, y validacion. Tal como se aprecia en las Tablas 9 y 10, existe una elevada sensibilidad a los cambios en el
reglaje del motor que se traduce en numerosas falsas alarmas, en este caso asociadas a los fallos de cortocircuito y rodamientos.
La Tabla 9 muestra que el modelo AE+CNN no alcanza un desempefio superior respecto a Random Forest, excepto en el
aislamiento del fallo relacionado a barra rota. La Fig. 7 ilustra y compara la matriz de confusion de Random Forest y AE+CNN
considerando las etapas de prueba y validacion.

11
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Figura 6
Matrices de confusion para etapas de prueba y validacion obtenidas en el escenario 2: (a) Random Forest, (b) AE+CNN.
Tabla 9
Desempefio alcanzado (%) por Random Forest en el Escenario 3
Precision - Puntuaje F1
Estado de operacion (Entrenamiento / Sens1blllflad (Entrenamiento / S.O porte
(Entrenamiento / s, (Entrenamiento / Prueba/
del motor Prueba / S .o Prueba / Validacion) Sy er
s 1 e, Prueba / Validacion) Validacion)
Validacién)
Barra de rotor rota 1.00/1.00/0.72 1.00/1.00/1.00 1.00/1.00/0.84 405/ 135/ 135
C"”‘;‘;ltgct‘;f" en 1.00/1.00/0.62 1.00/1.00/ 1.00 1.00/1.00/0.77 405/135/135
Rodamientos 1.00/0.98/1.00 1.00/0.75/0.73 1.00/0.85/0.85 405/135/135
contaminados
Saludable 1.00/0.89/0.00 1.00/0.99/0.00 1.00/0.94 /0.00 405/135/135
accuracy - - 1.00/0.95/0.68 1620/540/540
weighted avg 1.00/0.95/0.59 1.00/0.95/0.68 1.00/0.94/0.61 1620/540/540
Tabla 10
Desempeiio alcanzado (%) por AE+CNN en el Escenario 3
Prec1su3n Sensibilidad Puntuajtf Fl Soporte
(Entrenamiento / . (Entrenamiento / .
Clase (Entrenamiento / c1 o (Entrenamiento / Prueba /
Prueba / s e, Prueba / Validacion) N
Sy s Prueba / Validacion) Validacion)
Validacién)
Barra de rotor rota 1.00/0.99/1.00 1.00/1.00/1.00 1.00/1.00/1.00 16200 / 5400 / 5400
C"“‘;cslt;‘igfo en 1.00/1.00/0.50 1.00/0.99 / 1.00 1.00/1.00/0.67 16200 / 5400 / 5400
Rodamientos 0.70/0.53 / 1.00 0.63/0.47/0.51 0.66/0.50/0.68 16200 / 5400 / 5400
contaminados
Saludable 0.82/0,75/0,00 0.86/0.79/0.00 0.84/0.77/0.00 32400/ 10800 / 5400
accuracy - - 0.87/0.81/0.63 81000 /27000 / 21600
weighted avg 0.88/0.82/0.62 0.87/0.81/0.63 0.88/0.81/0.58 81000 /27000 / 21600
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4.4 RESULTADOS ALCANZADOS PARA EL ESCENARIO 4

Los resultados obtenidos por Random Forest y AE+CNN en el cuarto escenario experimental se ilustran en las Tablas 11 y
12. Como en el caso anterior, se tiene en cuenta la informacién en mostrada en el Tabla 3 para realizar la particion de los
datos disponible en las etapas de entrenamiento, prueba, y validacion. La comparacion también se realiza con base en las
métricas de Precision, Sensibilidad y Puntaje de F1-score. Los resultados derivados de esta configuracion muestran que el
desempefio de Random Forest y AE+CNN decae en las etapas de validacion. No obstante, Random Forest alcanza un
desempefio global que es superior respecto a AE+CNN. La Tabla 11 confirma que el modelo Random Forest aprende
acertadamente los patrones de fallos relacionados con la rotura de la barra de rotor y cortocircuito en estator, pero confunde
la operacion saludable con los patrones asociados a rodamientos contaminados. La Tabla 12 muestra que AE+CNN tiende a
confundir patrones de operacion saludable con los estados de fallos por cortocircuito en estator y rodamientos contaminados.
La Fig. 8 utiliza la perspectiva de la matriz de confusién para ilustrar cdmo Random Forest y AE+CNN se manejan durante
el reconocimiento de los patrones asociados estos estos estados de operacidn considerando las etapas de prueba y validacion.
En ambos clasificadores, se evidencia un desempefio superior al observado en el segundo y tercer escenario. Sin embargo, el
rendimiento alcanzado por Random Forest y AE+CNN continta siendo inferior al obtenido como linea de comparacién en el

primer escenario.
Matriz de Confusion - Validacion
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Figura 7
Matrices de confusidn para etapas de prueba y validacion obtenidas en el escenario 3: (a) Random Forest, (b) AE+CNN.
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Tabla 11
Desempefio alcanzado (%) por Random Forest en el Escenario 4
Precision - Puntuaje F1
Estado de operacion (Entrenamiento / Sens1blllflad (Entrenamiento / S.O porte
(Entrenamiento / s es (Entrenamiento / Prueba/
del motor Prueba / R Prueba / Validacion) Sy er
s e, Prueba / Validacion) Validacion)
Validacién)
Barra de rotor rota 1.00/1.00/1.00 1.00/1.00/1.00 1.00/1.00/1.00 405/ 135/ 135
C"m;‘;zctgito en 1.00 /0.99/ 1.00 1.00 / 1.00/ 1.00 1.00/1.00 / 1.00 405/135/135
Rodamientos 1.00/0.95/0.61 1.00/0.96/0.93 1.00/0.96/0.73 405/135/135
contaminados
Saludable 1.00/0.98/ 0.85 1.00/0.97/0.39 1.00/0.98/0.54 405/135/135
accuracy - - 1.00/0.98/0.83 1620/540/540
weighted avg 1.00/0.98 / 0.87 1.00/0.98 / 0.83 1.00/0.98 / 0.82 1620/540/540
Tabla 12
Desempeiio alcanzado (%) por AE+CNN en el Escenario 4
Precnsl?n Sensibilidad Puntua]ez F1 Soporte
(Entrenamiento / . (Entrenamiento / .
Clase (Entrenamiento / S, (Entrenamiento / Prueba /
Prueba / Sy .o Prueba / Validacion) S s
Sy s Prueba / Validacion) Validacion)
Validacion)
Barra de rotor rota 0.99/0.97/0.99 1.00/1.00/1.00 0.99/0.99/1.00 16200 / 5400 / 5400
C"m:;ractgito en 0.74/0.73 / 1.00 0.64/0.56/0.52 0.69/0.63 /0.68 16200 / 5400 / 5400
Rodamientos 0.82/0.77/0.51 0.87/0.87/0.83 0.85/0.81/0.63 16200 / 5400 / 5400
contaminados
Saludable 0.76/0.73/0.24 0.79/0.75/0.20 0.78/0.74/0.22 32400/ 10800 / 5400
accuracy - - 0.82/0.79/0.64 81000 /27000 /21600
weighted avg 0.83/0.80/0.69 0.82/0.79 / 0.64 0.83/0.79/0.63 81000 /27000 /21600

4.5 ASPECTOS RELEVANTES EN EL ANALISIS EXPERIMENTAL

Durante la fase experimental, se observo que el modelo Random Forest logra mantener un rendimiento elevado siempre que
los datos de entrenamiento y prueba procedan del mismo régimen de trabajo para el sistema motor-bomba. Sin embargo, el
desempefio del modelo presenta una disminucion abrupta en precision cuando datos adquiridos proceden de otros regimenes
de trabajos. Este comportamiento sugiere la existencia de un fendmeno conocido como desplazamiento de dominio intra-clase
(intra-class domain shift) donde instancias de una misma clase nominal, que en este caso representan el estado de operacion
saludable del motor, tienen variaciones sutiles pero relevantes en su distribucion estadistica. Se conoce que estas diferencias
pueden deberse a multiples factores como diferencias en la carga mecanica del motor, ruido electronico, o incluso cambios
en la calibracion de los sensores. El modelo Random Forest es altamente sensible a tales variaciones, ya que basa sus
decisiones en umbrales construidos sobre la distribucion exacta de los datos vistos durante el entrenamiento. En este caso,
Random Forest enfoca la decision discriminante en las caracteristicas espectrales y las medidas estadisticas dentro de bandas
de frecuencia especificas como la magnitud méxima, la media y la desviacion estandar en intervalos de 100 Hz (por ejemplo:
band_9700 9800 max_magnitude, band 7400 7500 mean_magnitude y band 4300 4400 std _magnitude, entre otras).
Ademas, en cuanto a relevancia, mas del 95% de las variables se asignaron exclusivamente al campo de la frecuencia. Por
otro lado, las propiedades tradicionales del dominio temporal como la media global o curtosis, exhibieron una importancia
considerablemente inferior para la decision final del modelo. Este resultado es técnicamente coherente ya que los fallos en los
motores eléctricos suelen manifestarse en modulaciones de alta frecuencia, arménicos, o componentes especificas del espectro
de corriente, para rangos especificos de frecuencia segun el tipo de fallo. En este sentido, el analisis por bandas permite aislar
y detectar estos patrones caracteristicos mientras que las métricas globales del dominio del tiempo tienden a promediar la
sefial y en ocasiones no capturan adecuadamente los detalles espectrales distintivos de cada condicion de operacion. Por otro
lado, los resultados muestran que el modelo AE+CNN es capaz de aprender y reproducir patrones caracteristicos en sefiales
de corriente para la deteccion de fallos en motores eléctricos, pero su desempeiio solo es elevado ante condiciones de operacion
con patrones bien definidos. Ambos modelos, Random Forest y AE+CNN, presentan limitaciones importantes en su capacidad
de generalizacion, especialmente frente a cambios en el reglaje del motor. Estas observaciones subrayan la importancia de
incorporar mayor diversidad de datos en el entrenamiento, aplicar estrategias de regularizacién mas robustas y explorar
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técnicas de adaptacion de dominio para construir sistemas mas confiables y adaptables en contextos reales de operacion
industrial.

Matriz de Confusion - Prueba Matriz de Confusion - Validacion

(a) 250

Barra de rotor rota - 0 0 0 Barra de rotor rota

120

100

Cortocircuito en estator - o 0 0 0 Cortocircuito en estator 80
60

Rodamientos contaminados - | 0 0 130 5 100 Redamientos contaminados

ludabl
Saludable - ] Saludable

(b)

Matriz de Confusion - Conjunto de Prueba

8000

Barra de rotor rota Barra de rotor rota

7000

6000 4000

Cortocircuito en estator Cortocircuito en estator 0 2137

3000

Rodamientos contaminados [ 700 2000

Rodamientos contaminados

1000

Saludable Saludable 0 1087

Figura 8
Matrices de confusion para etapas de prueba y validacion obtenidas en el escenario 4: (a) Random Forest, (b) AE+CNN.

6.- CONCLUSIONES

En el presente trabajo se analizd la viabilidad de Random Forest y AE+CNN para detectar fallas operativas en motores
eléctricos de jaula de ardilla, considerando exclusivamente sefiales de corriente. Los resultados obtenidos refuerzan el enfoque
adoptado, y confirman que trabajar en el dominio de la frecuencia proporciona mayor capacidad discriminante en vista de
detectar los fallos eléctricos y mecanicos que tienen lugar en los motores eléctricos de induccién. Aunque los resultados
alcanzados son alentadores, se evidencia un impacto negativo del fendmeno de desplazamiento de dominio intra-clase
relacionado a diferencias fisicas en la alineacion entre motor y carga. Por tanto, en vista de futuras investigaciones, se hace
necesario realizar experimentos controlados donde se varie explicitamente la configuracién motor-bomba para desarrollar
estrategias de normalizacion especificas o incluso etiquetado por configuracién. Se recomienda, ademas, anélisis adicionales
utilizando sefiales de vibracidn y sefiales de corriente por fase. Aunque nuestro trabajo se centra exclusivamente en aprovechar
las sefiales de corriente, los resultados sugieren que dicha variable puede no ser suficiente para capturar ciertos fallos y
distinguir entre estados saludables con alta variabilidad. El analisis conjunto de sefiales de vibracién y corriente permitiria
mejorar la capacidad de generalizacion de los modelos y aportar informacion complementaria Gtil para la clasificacion.
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