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RESUMEN / ABSTRACT 

Los motores trifásicos de inducción constituyen un elemento central en numerosos procesos industriales.  Este trabajo propone 

un enfoque de diagnóstico de fallos no invasivo para motores trifásicos de inducción que utiliza exclusivamente señales de 

corriente por fase. Se evalúan dos estrategias de Inteligencia Artificial: (i) un método basado en descriptores estadísticos y 

frecuenciales combinado con un clasificador Random Forest, y (ii) una Red Neuronal Convolucional con Autoencoder 

(AE+CNN), que modela el comportamiento saludable del motor y detecta desviaciones mediante errores de reconstrucción. 

El procedimiento de detección de fallos contempla la transformación y segmentación de las señales trifásicas, el análisis de 

características temporales y frecuenciales, el entrenamiento y validación de ambos modelos, así como la evaluación de su 

robustez ante distintas condiciones operativas. Los experimentos se desarrollan utilizando datos reales de una planta piloto 

con dos bombas centrífugas accionadas por motores de inducción y variadores de velocidad. Los resultados permiten valorar 

la eficacia comparativa de ambos enfoques y su potencial para una implementación práctica, económica y escalable en 

entornos industriales. 

Palabras claves: motores trifásicos de inducción, corriente por fase, detección de fallos, Random Forest, AE+CNN  

 

Three-phase induction motors are a key component in numerous industrial processes. This work proposes a non-invasive 

fault-diagnosis approach for three-phase induction motors that relies exclusively on per-phase current signals. Two 

Artificial Intelligence strategies are evaluated: (i) a method based on statistical and frequency-domain descriptors 

combined with a Random Forest classifier, and (ii) a Convolutional Neural Network with an Autoencoder (AE+CNN), 

which models the motor’s healthy behavior and detects deviations through reconstruction errors. The fault-detection 

procedure includes the transformation and segmentation of the three-phase current signals, analysis of time- and 

frequency-domain features, training and validation of both models, and assessment of their robustness under different 

operating conditions. Experiments are conducted using real data from a pilot plant equipped with two centrifugal pumps 

driven by induction motors and variable-speed drives. The results demonstrate the comparative effectiveness of both 

approaches and their potential for practical, cost-efficient, and scalable implementation in industrial environments. 

Key words: three-phase induction motors, phase current signals, fault detection, Random Forest, AE+CNN 

A non-intrusive analysis of anomalous conditions in three-phase motors using current signals and Artificial Intelligence 

techniques 

1-INTRODUCCIÓN 

Debido a su elevada robustez y versatilidad para operar en diversos entornos, los motores trifásicos de inducción constituyen 

el núcleo de numerosos procesos industriales. Atender oportunamente los fallos eléctricos y mecánicos que tienen lugar estos 

motores es crucial para mantener la eficiencia operativa y evitar paradas no planificadas con alto impacto económico [1,2]. 
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Entre los fallos eléctricos más comunes se encuentran los cortocircuitos entre espiras, originados por la degradación del 

aislamiento y responsables de aproximadamente el 30 %–40 % de las averías en el estator. Este deterioro suele estar asociado 

a humedad, temperaturas elevadas y contaminación por aceite o suciedad, factores que comprometen las propiedades 

dieléctricas del aislamiento y favorecen los cortocircuitos. Para detectar de forma temprana este tipo de degradación, se 

emplean transformadores de corriente de alta sensibilidad (HSCT), capaces de medir y descomponer la corriente de fuga en 

sus componentes resistiva y capacitiva, proporcionando una estimación fiable del estado del aislamiento [2,3]. En cuanto a 

los fallos mecánicos, se originan principalmente por vibraciones, desalineaciones, tensiones de correas, y condiciones 

operativas inadecuadas. Por otro lado, se estima que alrededor del 70 % de las averías mecánicas en los motores están de 

alguna manera relacionadas al desgaste de los rodamientos, y éstos a menudo pueden desencadenar fallos secundarios en el 

motor como la típica rotura de las barras del rotor o el desplazamiento del rotor respecto al estator [3]. La alta incidencia y el 

costo asociado a los fallos eléctricos y mecánicos en los motores eléctricos justifican, por tanto, la necesidad de desarrollar 

enfoques de diagnóstico más eficientes, económicos y fácilmente integrables en entornos industriales [1-6]. Sin embargo, tal 

como se muestra en la Tabla 1, las técnicas tradicionales para la detección de tales fallos suelen requerir sensores adicionales 

o intervenciones en la máquina eléctrica, lo cual incrementa el costo y limita su aplicación de manera en grandes plantas 

industriales [7]. En este contexto, resulta especialmente atractivo entonces desarrollar soluciones basadas en señales eléctricas 

de la propia operación del motor. Siendo así, diversos estudios demuestran que las perturbaciones mecánicas y eléctricas se 

manifiestan en la señal de corriente, lo que abre la posibilidad de realizar un diagnóstico basado en una variable ampliamente 

disponible y de adquisición no invasiva.  

Tabla 1 

Enfoques de detección de fallos en motores eléctricos utilizando las técnicas tradicionales y señales eléctricas. 

 Técnicas tradicionales (vibración, 

temperatura, acústica) 

Métodos basados en señales eléctricas (corriente, 

tensión, potencia) 

Ventajas  Muy precisas para fallos mecánicos. 

 Tecnologías consolidadas.  

 Alto nivel de madurez industrial. 

 No intrusivos y de bajo costo.  

 Usan sensores ya disponibles en tableros y SCADA. 

 Adecuados para monitoreo en línea.  

 Escalables para grandes plantas. 

Desventajas  

 Elevado costo por sensores dedicados. 

 Instalación intrusiva. 

 Necesidad de calibración y mantenimiento. 

 Poca escalabilidad. 

 

 

 Menor sensibilidad ante fallos mecánicos  

 Requiere procesar armónicos.  

 A veces insuficiente para fallas puramente mecánicas. 

A partir de esto, el presente trabajo propone un enfoque de detección de fallos en motores eléctricos de jaula de ardilla donde 

se utiliza exclusivamente las señales de corriente por fase, medida de forma no invasiva desde la acometida del motor. Este 

enfoque evita la instalación de sensores o modificaciones adicionales en la máquina eléctrica, posibilitando una 

implementación rápida, económica y compatible con ambientes industriales reales [7, 8]. Desde la perspectiva, la solución 

propuesta evalúa y compara dos estrategias de Inteligencia Artificial para el diagnóstico de los fallos considerando el análisis 

de las señales de corriente eléctrica en el motor. El primer enfoque que es evaluado considera las variables estadísticas y las 

mediciones en frecuencia que caracterizan el comportamiento del motor para identificar los fallos mediante un clasificador 

Random Forest. En el segundo enfoque evaluado, se utilizan fragmentos temporales (ventanas) de la señal de corriente para 

aprender el patrón de operación normal mediante una Red Neuronal Convolucional con Autoencoder (AE+CNN), que genera 

señales residuales para describir desviaciones respecto al comportamiento saludable del motor. De esta manera se logran 

evaluar métodos basados en características explícitas y métodos basados en aprendizaje directo de la señal, respectivamente. 

En este sentido, Random Forest proporciona robustez ante ruido y una elevada capacidad para manejar conjuntos de datos 

multidimensionales [9]. En tanto, AE+CNN permite modelar distribuciones normales de funcionamiento detectando 

desviaciones respecto a la operación normal del motor a partir del error de reconstrucción, siendo particularmente útil para 

capturar relaciones no lineales y características ocultas en las señales de corriente [10, 11]. 

El objetivo general de este trabajo es evaluar la viabilidad de Random Forest y AE+CNN para detectar fallas operativas en 

motores eléctricos de jaula de ardilla, considerando exclusivamente señales de corriente. Para validar la efectividad de la 

propuesta se consideran condiciones representativas de los entornos industriales, pero sin depender de sensores de vibración 

y temperatura. Para ello se establecen cuatro pasos fundamentales: (i) transformación de señales de corriente trifásica y 

segmentación en ventanas temporales, (ii) análisis de descriptores en el dominio del tiempo y la frecuencia, (iii) entrenamiento 

y validación de los modelos de clasificación supervisada Random Forest y AE+CNN, y (iv) evaluación de robustez del modelo 

predictivo frente a diferentes condiciones operativas. La efectividad de Random Forest y AE+CNN se evalúa utilizando los 
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datos presentados por [12], y que describen la operación de dos bombas centrífugas, impulsadas por motores de inducción 

con variadores de velocidad. 

El presente trabajo se organiza de la siguiente manera. La Sección 2 realiza una breve descripción del caso de estudio y los 

datos históricos utilizados. Los procedimientos con Random Forest y AE+CNN se abordan en la Sección 3. La Sección 4 se 

centra en el análisis y discusión de los resultados, enfatizando algunos aspectos relevantes del diseño experimental. Finalmente 

se realizan las conclusiones del trabajo y líneas futuras. 

2.- CASO DE ESTUDIO Y TRANSFORMACIÓN DE DATOS  

  

El caso de estudio utilizado en esta investigación fue presentado por Bruinsma, (2024) [12], y cuenta con datos experimentales 

de dos bombas centrífugas, impulsadas por motores de inducción con variadores de velocidad. La información técnica de la 

instalación piloto y los datos de chapa de los motores se puedes visualizar en la Fig. 1 y Tabla 2, respectivamente. El conjunto 

de datos obtenido de este sistema recoge las lecturas del comportamiento del estado saludable de cada motor y diez fallos 

simulados: (1) rodamientos defectuosos, (2) apoyos flojos, (3) impulsor averiado, (4) corto circuito del estator, (5) rotura de 

barra del rotor, (6) desalineamiento, (7) desbalance, (8) degradación del acoplamiento, (9) cavitación, y (10) eje doblado. Para 

cada tipo de fallo se recopilan datos con distintos niveles de severidad y velocidades de funcionamiento para el motor. Todas 

las condiciones incluyen datos de vibración, corriente y tensión. 

  

Figura 1 

 Planta Piloto [12]: (1) motor, (2) bomba, (3) salida de agua, (4) entrada de agua, (5) válvula, y (6) variador de frecuencia (VFD). 

Los datos de vibración son obtenidos mediante acelerómetros, y las señales eléctricas se obtienen a partir de pinzas de corriente 

colocadas en cada fase. La medición de las variables involucradas se realiza cada cinco minutos y se almacenan en archivos 

CSV. Considerando esta configuración un total de cinco archivos CSV equivalentes a cinco canales para los datos de vibración 

y seis archivos CSV equivalentes a seis canales para los datos eléctricos se construyen para su análisis. Cada archivo CSV 

contiene seis columnas, comenzando por la información temporal y seguida por la información de las variables físicas 

medidas. 
Tabla 2 

Detalles y datos de chapa de los motores eléctricos [12] 

Nr. Etiqueta Técnica Polos Umax(V)/Imax(A) kW @ PRM Rodamientos 

2 MG160MA4042-H3 4 380-415/23.4-22.4 11 @ 1470 6309.C4 

4 MG180MB2-48-F1 2 380-415/43.5 22 @ 2950 6310.C4  
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En el caso de los datos eléctricos, los seis archivos CSV contienen 300000 muestras por columna, siendo los tres primeros 

canales las corrientes por fase y los canales restantes la tensión por fase. Es válido destacar que, en el presente estudio, se 

utilizaron solamente los datos eléctricos del Motor-2 que contiene registros en diferentes velocidades de operación (50%, 75% 

y 100%). Asimismo, tal como se observa en la Fig. 2, el análisis experimental se ha limitado al estudio de tres fallos y el 

estado de operación saludable. Los fallos considerados son: (1) rotura de barras del rotor, (2) contaminación de rodamientos, 

y (3) cortocircuito en el estator. La detección de estos eventos anómalos se considera de suma importancia debido su alta 

incidencia en los motores de inducción que se utilizan en entornos industriales. A modo de ejemplo, la Fig. 2 ilustra las 

diferencias en las características que asume la corriente de fase para los estados de operación antes mencionados. Como se 

observa en la Fig. 2(a), el estado de operación saludable del motor (sin fallos), se caracteriza por una señal sinusoidal suave 

y simétrica. Por otro lado, como se aprecia en la Fig. 2(b), cuando existen rodamientos contaminados la señal de corriente 

muestra ligeras irregularidades por las vibraciones o micro-oscilaciones que se originan del desgaste y las partículas en los 

rodamientos. En tanto, la Fig. 2(c) muestra la señal de corriente ante el fallo en el estator cortocircuitado. En este caso la señal 

se caracteriza por asimetrías y desfase en la amplitud, ya que los cortocircuitos en el estator suelen generar desequilibrios 

magnéticos que afectan a la forma de la corriente. Por último, en la Fig. 2(d), se aprecia una modulación en la envolvente con 

variaciones cíclicas en la amplitud que son típicas del fenómeno conocido como frecuencia de deslizamiento que ocurre 

debido a la rotura de barras del rotor. Para realizar el estudio con los datos de este caso de estudio, los conjuntos de 

entrenamiento (60%), prueba (20%) y validación (20%) se generan utilizando una semilla aleatoria que garantiza no caer en 

sesgos por secuencia o posición dentro del data set. Además, se implementó un enfoque de validación externa para el modelo 

predictivo considerando la disponibilidad de datos de operación normal en tres diferentes condiciones operativas (saludable1, 

saludable2 y saludable3). Esta metodología permite evaluar la capacidad de generalización del modelo predictivo teniendo en 

cuenta registros de operación sin fallos que son obtenidos bajo diversas configuraciones de acoplamiento entre el motor y la 

bomba.  Esta estrategia de selección aleatoria se fundamenta en el supuesto de que los datos representan muestras 

independientes e idénticamente distribuidas. Este supuesto es común en problemas de aprendizaje automático y análisis de 

series temporales estacionarias, donde se considera que los datos provienen de una misma distribución y no están 

correlacionados entre sí de forma significativa [13], y resulta válido siempre que se garanticen condiciones operativas 

constantes durante la adquisición, así como la independencia temporal entre las columnas consecutivas del conjunto de datos 

históricos.  Las distintas configuraciones para el estado saludable (ejemplo, saludable 1 vs. saludable 2) permiten emular 

condiciones reales de variabilidad estructural del sistema, alineándose con el concepto de validación externa (out-of-

distribution testing) [14]. 

2.1 SEGMENTACIÓN TEMPORAL EN VENTANAS  

La segmentación temporal de los datos brutos contenidos en los conjuntos de entrenamiento, prueba y validación se realiza 

para transformar las señales de corriente en unidades de análisis compatibles que serán las entradas a los modelos de 

aprendizaje automático utilizados. En el caso del modelo Random Forest, las señales fueron divididas en ventanas de 1 

segundo de duración, lo que equivale a 20.000 muestras por ventana, dada la frecuencia de muestreo del sistema de 20 kHz. 

Este tamaño de ventana provee un equilibrio entre resolución temporal y riqueza espectral que permite capturar múltiples 

ciclos de la señal, facilitando la identificación de armónicos, distorsiones y transitorios relevantes para la clasificación de los 

fallos. Por otro lado, en AE+CNN se optó por un enfoque de mayor granularidad utilizando ventanas de 25 microsegundos, 

correspondientes a 500 muestras por segmento. A diferencia del modelo Random Forest, el uso de ventanas más pequeñas 

para el AE+CNN permiten captar variaciones locales más sutiles en el comportamiento normal del motor. En ambos casos, 

las ventanas fueron generadas sin solapamiento para evitar la dependencia entre muestras consecutivas, y preservar la 

integridad del proceso de evaluación. Al no incluir solapamiento entre ventanas se evitan muestras demasiado similares, lo 

cual podría inducir fenómenos de sobreajuste y comprometer la generalización del modelo. Esta precaución está respaldada 

por estudios como el de Bengio (2013) [15], quienes advierten sobre los riesgos de dependencia entre instancias en modelos 

de representación profunda. Esta estrategia de segmentación diferenciada permite adaptar el formato de entrada a las 

necesidades específicas de cada arquitectura, optimizando tanto la extracción de características como el aprendizaje de 

patrones relevantes en los datos. El proceso de segmentación para Random Forest generó unas 2.025 ventanas para 

entrenamiento, 675 ventanas para prueba, y 540 ventanas para validación. En el caso de AE+CNN, se obtuvieron 81.000 

ventanas para entrenamiento, 27.000 ventanas para prueba, y 21.600 ventanas para la etapa de validación.  

 



Guillermo L. Zapata Álvarez, Rafael Andrade Cartegoso, José M. Bernal de Lázaro 

RIELAC, Vol. 46 (Publicación Continua):e9713 (2025) ISSN:1815-5928 

 

5 

 

 

  

  

 

 

Figura 2 

 Operación del motor [12]: (a) saludable, (b) contaminación de rodamientos, (c) cortocircuito en estator, y (d) rotura de barras. 

 

2.2 CARACTERÍSTICAS EN EL DOMINIO DEL TIEMPO Y FRECUENCIA 

Para extraer características combinadas en el dominio del tiempo y la frecuencia se consideraron métricas estadísticas como 

la media, el valor absoluto medio, la raíz cuadrada media (RMS), la desviación estándar, la curtosis, la asimetría y los valores 

máximos y mínimos. Las características en frecuencia se obtuvieron mediante la Transformada Rápida de Fourier (FFT), 

dividiendo el espectro en bandas de 100 Hz y calculando en cada una de ellas la frecuencia dominante, la magnitud máxima, 

la magnitud media y la desviación estándar. También se consideraron las características en el dominio de la frecuencia, pero 

omitiendo por completo las métricas del dominio temporal. Esta variante permite evaluar si las componentes espectrales por 

sí solas contienen suficiente información discriminativa para el diagnóstico de las fallas, además de explorar la posibilidad de 

reducir la dimensionalidad del espacio de características y simplificar el flujo de procesamiento sin sacrificar el rendimiento 

predictivo, como se muestra en la Tabla 3. 

 
Tabla 3 

Comparación de enfoques de extracción de características. 

Enfoque Descripción Tipo de características Objetivo principal 

Tiempo + 

frecuencia 

Extrae características estadísticas del dominio 

temporal y espectrales por bandas en el dominio de 

la frecuencia. 

Media, RMS, curtosis, 

skewness + FFT por bandas 

Capturar máxima 

información de forma 

complementaria. 

Solo 

frecuencia 

Extrae únicamente características espectrales por 

bandas aplicando la FFT. 

FFT: frecuencia dominante, 

magnitudes por banda 

Evaluar la capacidad 

discriminativa de 

componentes espectrales  
 

                  (a)                                                                                              

 

 

 

 

(b) 

 

 

 

 

 

(c) 

 

 

 

 

 

(d) 
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3.- PROCEDIMIENTOS CON RANDOM FOREST / AE+CNN 

3.1 Principios de operación del clasificador Random Forest 

Random Forest es un algoritmo de bagging que combina un conjunto de árboles de decisión, cada uno entrenado sobre una 

muestra aleatoria obtenida mediante bootstrap, lo que permite mejorar la estabilidad y precisión del modelo. En cada nodo, 

la división se realiza considerando un subconjunto aleatorio de características que reduce la correlación entre árboles y 

promueve la diversidad estructural. Para clasificación, la predicción final se obtiene mediante votación mayoritaria. El 

algoritmo reduce la varianza del estimador respecto a una sola estructura arbórea sin aumentar excesivamente el sesgo, dado 

que la combinación de clasificadores débiles no correlacionados permite aproximar la función objetivo con menor error 

generalizado. La importancia de las características suele estimarse mediante la disminución media del índice Gini, lo que 

proporciona información sobre la contribución relativa de cada variable al modelo. En conjunto, Random Forest constituye 

un estimador robusto, no paramétrico y altamente paralelo, adecuado para datos heterogéneos y escenarios con ruido o 

interacciones complejas entre variables. 

3.2 Principios de operación del clasificador AE+CNN 

El modelo AE+CNN combina un Autoencoder no supervisado con una red convolucional para la extracción jerárquica de 

características y clasificación. El Autoencoder se compone de un codificador 𝑓𝜃: 𝑋 → 𝑍 que mapea los datos de entrada 𝑥 ∈
 ℝ𝑛 a un espacio latente 𝑧 ∈  ℝ𝑚 𝑚 ≪ 𝑛, y un decodificador 𝑔𝜃: 𝑍 → 𝑋 que reconstruye la entrada 𝑥̂ = 𝑔𝜃(𝑓𝜃(𝑥)), 

minimizando la función de reconstrucción ℒ𝑟𝑒𝑐 = ‖𝑥 − 𝑥̂‖2. La representación latente z es posteriormente alimentada a una 

red neuronal que aplica las operaciones de convolución y pooling para extraer patrones espaciales o temporales complejos, 

seguido de capas totalmente conectadas y una función de activación softmax para clasificación. La combinación AE+CNN 

permite que la red aprenda representaciones latentes compactas y eliminando ruido en los datos y optimizando 

simultáneamente la reconstrucción y la capacidad de discriminación supervisada, lo que conlleva a obtener un modelo robusto 

para detección de anomalías, clasificación de fallos y análisis de señales de alta dimensión. 

3.3 Implementaciòn de las técnicas de inteligencia computacional 

Una vez se cuenta con las características de tiempo y frecuencia que describen el estado operativo del motor, se pasa al 

entrenamiento y validación de los modelos Random Forest y AE+CNN. Como primer paso, se procede a la normalización de 

las matrices de características a fin de evitar diferencias de escala entre variables que afecten negativamente el desempeño de 

los predictores. Posterior a esto, se codifican numéricamente las etiquetas de clase a través de LabelEncoder, y se aplica One-

Hot Encoding para la clasificación multiclase con salidas probabilísticas, garantizando la compatibilidad softmax. Cabe 

destacar que las métricas utilizadas para validar el desempeño de ambos modelos predictivos se obtienen a partir de la matriz 

de confusión y los informes de clasificación por clase, siendo muy relevantes las métricas de exactitud global y puntaje macro 

de F1-score.  

Las Figs. 3 y 4 ilustran el flujo de trabajo seguido en la implementación de los modelos Random Forest y AE+CNN, 

respectivamente.  
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Figura 3 

 Flujo de trabajo seguido en la implementación del modelo Random Forest  

 

 

Figura 4 

 Flujo de trabajo seguido en la implementación del modelo AE+CNN. 

 



Guillermo L. Zapata Álvarez, Rafael Andrade Cartegoso, José M. Bernal de Lázaro 

RIELAC, Vol. 46 (Publicación Continua):e9713 (2025) ISSN:1815-5928 

 

8 

 

En el caso del modelo Random Forest el entrenamiento se realizó a partir de las características previamente extraídas de las 

señales, considerando conjuntamente el dominio del tiempo y frecuencia. En este sentido, Random Forest es particularmente 

útil puesto que permite trabajar directamente sobre las características extraídas, incluso cuando estas tienen escalas diferentes 

o presentan colinealidad parcial. Esto reduce significativamente la necesidad de preprocesamiento y lo vuelve más robusto a 

cambios inesperados en las condiciones del sistema. Además, su estructura basada en múltiples árboles independientes le 

permite procesar eficientemente el ruido y los valores atípicos, dos elementos que son frecuentes en señales eléctricas reales 

capturadas en entornos industriales. Los árboles individuales que componen el bosque no están fuertemente influenciados por 

valores extremos, ya que el impacto de estos se diluye al agregarse las predicciones en conjunto. Esta capacidad de 

generalización también se ha observado empíricamente en los experimentos realizados, donde se ha logrado mantener una 

alta precisión en los conjuntos de prueba sin incurrir en un sobreajuste significativo. Cabe destacar que para el modelo Random 

Forest se implementó la búsqueda aleatoria de los hiperparámetros intentando minimizar la diferencia del error obtenido para 

las etapas de entrenamiento y prueba (overfitting gap≤ 0.05). Este proceso se realiza de manera iterativa evaluando las 

variables con mayor poder predictivo, el número de árboles, la profundidad máxima, el mínimo de muestras por hoja y por 

división.  

 

En el caso de AE+CNN, tal cual se ha mencionado anteriormente, se intenta reconstruir las señales correspondientes 

exclusivamente al estado saludable del motor eléctrico. La hipótesis considerada en este caso parte del supuesto de que se 

obtendrán errores de reconstrucción elevados al identificarse señales asociadas a fallas. Acorde con la investigación de Tomas, 

(2021) [16], este procedimiento permite considerar el error o residuo de reconstrucción como un indicador de anomalías. 

Siendo así, la fase de Autoencoder permite aprender la representación de señales normales, y la CNN clasifica estas 

representaciones codificadas en diferentes tipos de fallos. Con esta filosofía de trabajo se implementó una arquitectura de 

Autoencoder completamente densa (fully connected) y simétrica, compuesta por capas ocultas de 1024, 512, 256, 128 y 64 

neuronas en el codificador, todas con funciones de activación ReLU. Por otro lado, la representación comprimida o cuello de 

botella (bottleneck) se define como una capa densa de 64 unidades encargada de capturar las características latentes esenciales 

en la operación saludable del motor. En la etapa de decodificación, se replicó la estructura en sentido inverso con las mismas 

dimensiones, finalizando en una capa de salida lineal del mismo tamaño que la entrada (500), permitiendo reconstruir la señal 

original. El modelo fue compilado utilizando el optimizador Adam y la función de pérdida Mean Squared Error (MSE). El 

proceso de entrenamiento se controló mediante el enfoque de Early Stopping, considerando 50 épocas y la función de pérdida 

sobre el subconjunto de validación. Una vez finalizado el entrenamiento, el Autoencoder permite reconstruir las señales que 

describen el estado operativo del motor.  Lo cual permite calculan los valores residuos considerando la diferencia punto a 

punto entre la señal original y su reconstrucción, que representan la entrada para la posterior etapa de clasificación supervisada. 

La Red Neuronal Convolucional (CNN), que forma parte del modelo discriminante, se entrena utilizando los vectores de 

residuo generados por el Autoencoder. En el clasificador neuronal se incluyó una capa Conv1D con kernel size de 5, activación 

ReLU, y una capa de batch normalization para estabilizar el proceso de entrenamiento. Tras cada convolución se aplicó Max 

Pooling para reducir la dimensionalidad y extraer las características más representativas, seguido de una capa Dropout con 

tasa de 0.3 para prevenir el sobreajuste. Por otro lado, la red incorpora filtros progresivamente, comenzando con 64 y 

aumentando hasta 512, lo que permite a la arquitectura detectar patrones complejos y jerárquicos dentro de la señal. La 

arquitectura neuronal implementada también incluye una capa de Global Average Pooling que convierte cada mapa de 

activación convolucional en un único valor promedio. Esta capa reduce drásticamente el número de parámetros, y también 

actúa como una forma de regularización estructural al enfocarse en la información global más robusta de cada canal, 

descartando detalles locales ruidosos. A continuación, se añade una capa densa de 128 neuronas con activación ReLU, 

encargada de integrar las características extraídas y preparar la información para la clasificación. Finalmente, una capa de 

salida con activación softmax devuelve una distribución de probabilidad sobre las clases posibles, permitiendo identificar el 

tipo de condición operativa de cada ventana de señal.  

4.- ANÁLISIS Y DISCUSIÓN DE RESULTADOS 

A fin de validar el desempeño de los algoritmos Random Forest y AE+CNN, se consideró un total de cuatro escenarios que 

describen la operación sin fallos (Saludable 1, Saludable 2, Saludable 3, y Saludable 4) del motor según la configuración de 

acoplamiento entre el motor y la bomba. Los datos adquiridos en operación con fallo: (1) rotura de barras del rotor, (2) 

contaminación de rodamientos, (3) cortocircuito en el estator, y los datos de operación normal del motor procedentes de las 

distintas configuraciones de acoplamiento se combinan para formar los escenarios descritos en la Tabla 4.  A continuación, 

se analizan brevemente los resultados alcanzados en cada uno de estos escenarios. 
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Tabla 4 

Escenarios experimentales considerando la operación normal con diferentes regímenes de trabajo para motor-bomba. 

Escenario Entrenamiento Prueba Validación 

Escenario 1 Saludable 1/ Fallos Saludable 1/ Fallos Saludable 1/ Fallos 

Escenario 2 Saludable 1/ Fallos Saludable 1/ Fallos Saludable 2/ Fallos 

Escenario 3 Saludable 1/ Fallos Saludable 3/ Fallos Saludable 2/ Fallos 

Escenario 4 Saludable 2/ Fallos Saludable 3/ Fallos Saludable 1/ Fallos 
 

4.1 RESULTADOS ALCANZADOS PARA EL ESCENARIO 1 

Las Tablas 5 y 6 resumen los resultados alcanzados por Random Forest y AE+CNN en el primer escenario. En ambos casos 

se está considerando las etapas de entrenamiento, prueba, y validación. Además, la comparación se realiza con base en las 

métricas de Precisión, Sensibilidad y Puntaje de F1-score. En el caso de Random Forest, la Tabla 5 ilustra que se alcanza una 

predicción perfecta durante la etapa del entrenamiento, aunque el desempeño global decae hasta un 5% en las etapas de prueba 

y validación debido que el clasificador confunde los patrones de operación normal con la operación del motor cuando existen 

rodamientos contaminados. La Tabla 6 confirma que el modelo AE+CNN también aprende acertadamente los patrones de 

fallos relacionados con la rotura de la barra de rotor y cortocircuito en estator. Sin embargo, respecto al clasificador Random 

Forest, la predicción utilizando AE+CNN decae significativamente en las etapas de prueba y validación al confundir patrones 

de operación normal y operación con rodamientos contaminados. La Fig. 5 utiliza la perspectiva de la matriz de confusión 

para ilustrar cómo Random Forest y AE+CNN se manejan durante el reconocimiento de los patrones asociados estos dos 

estados de operación considerando las etapas de prueba y validación. 
 

 

Tabla 5 

Desempeño alcanzado (%) por Random Forest en el Escenario 1 

Estado de operación 

del motor 

Precisión 

(Entrenamiento / 

Prueba / 

Validación) 

Sensibilidad 

(Entrenamiento / 

Prueba / Validación) 

Puntuaje F1 

(Entrenamiento / 

Prueba / Validación) 

Soporte (Entrenamiento / 

Prueba /      Validación) 

Barra de rotor rota 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 405 / 135/ 135 

Cortocircuito en 

estator 
1.00 / 1.00 / 1.00 1.00 / 1.00 / 1,00 1.00 / 1.00 / 1.00 405/135/135 

Rodamientos 

contaminados 
0.99 / 0.83/ 0.86 1.00 / 0.98 / 0.96 1.00 / 0.89 / 0.90 405/135/135 

Saludable 1.00 / 0.97 / 0.96 0.99 / 0.80 / 0.84 1.00 / 0.88 / 0.89 405/135/135 

     

accuracy - - 1.00 / 0.94 / 0.95 1620/540/540 

weighted avg 1.00 / 0.95 / 0.95 1.00 / 0.94 / 0.95 1.00 / 0.94 / 0.95 1620/540/540 

 

 

Tabla 6 

Desempeño alcanzado (%) por AE+CNN en el Escenario 1 

Clase 

Precisión 

(Entrenamiento / 

Prueba / 

Validación) 

Sensibilidad 

(Entrenamiento / 

Prueba / Validación) 

Puntuaje F1 

(Entrenamiento / 

Prueba / Validación) 

Soporte (Entrenamiento / 

Prueba /     Validación) 

Barra de rotor rota 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 16200 / 5400 / 5400 

Cortocircuito en 

estator 
1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 16200 / 5400 / 5400 

Rodamientos 

contaminados 
0.82 / 0.64 / 0.69 0.77 / 0.67 / 0.69 0.80 / 0.66 / 0.69 16200 / 5400 / 5400 

Saludable 0.79 / 0.66 / 0.69 0.84 / 0.63 / 0.69 0.81 / 0.64 / 0.69 16200 / 5400 / 5400 

     

accuracy - - 0.90 / 0.82 / 0.84 64800 / 21600 / 21600 

weighted avg 0.90 / 0.82 / 0.84 0.90 / 0.82 / 0.84 0.90 / 0.82 / 0.84 64800 / 21600 / 21600 
 
 

(a)                                                                             
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Figura 5 

 Matrices de confusión para etapas de prueba y validación obtenidas en el escenario 1: (a) Random Forest, (b) AE+CNN. 

 

4.2 RESULTADOS ALCANZADOS PARA EL ESCENARIO 2 

Los resultados obtenidos por Random Forest y AE+CNN en el segundo escenario se ilustran en las Tablas 7 y 8. Como en el 

caso anterior, se consideran las etapas de entrenamiento, prueba, y validación. La comparación también se realiza con base 

en las métricas de Precisión, Sensibilidad y Puntaje de F1-score. La Tabla 7 muestra que en el caso de Random Forest se 

mantienen desempeños alentadores en las etapas de entrenamiento y prueba. Sin embargo, en la etapa de validación, se observa 

que Random Forest disminuye significativamente su rendimiento y muestra una respuesta altamente sensible a cambios en el 

reglaje del motor indicando numerosas falsas alarmas para los fallos de cortocircuito y barra rota. Por otro lado, la Tabla 8 

confirma que el modelo AE+CNN no logra identificar correctamente la condición de operación saludable, clasificando todos 

datos de operación normal erróneamente como fallos. Esto evidencia que el modelo AE+CNN se enfoca demasiado en la 

representación aprendida para operación saludable y no logra capturar totalmente la variabilidad en los datos. Por demás, 

diferenciar entre el estado de operación saludable y el estado de operación con rodamientos contaminados sigue siendo el 

mayor desafío para el modelo predictor. Este fenómeno se evidencia en la Fig. 6 que ilustra las matrices de confusión obtenidas 

para Random Forest y AE+CNN durante el reconocimiento de los patrones en las etapas de prueba y validación. 

 

 

 

 

 

 



Guillermo L. Zapata Álvarez, Rafael Andrade Cartegoso, José M. Bernal de Lázaro 

RIELAC, Vol. 46 (Publicación Continua):e9713 (2025) ISSN:1815-5928 

 

11 

 

 

Tabla 7 

Desempeño alcanzado (%) por Random Forest en el Escenario 2 

Estado de operación 

del motor 

Precisión 

(Entrenamiento / 

Prueba / 

Validación) 

Sensibilidad 

(Entrenamiento / 

Prueba / Validación) 

Puntuaje F1 

(Entrenamiento / 

Prueba / Validación) 

Soporte 

(Entrenamiento /   Prueba /    

Validación) 

Barra de rotor rota 1.00 / 1.00 / 0.71 1.00 / 1.00 / 1.00 1.00 / 1.00 / 0.83 405 / 135/ 135 

Cortocircuito en 

estator 
1.00 / 1.00 / 0.62 1.00 / 1.00 / 1.00 1.00 / 1.00 / 0.77 405/135/135 

Rodamientos 

contaminados 
0.99 / 0.91/ 1.00 1.00 / 0.98 / 0.96 0.99 / 0.94 / 0.98 405/135/135 

Saludable 1.00 / 0.98 / 0.00 0.99 / 0.90 / 0.00 0.99 / 0.94 / 0.00 405/135/135 

     

accuracy - - 1.00 / 0.97 / 0.74 1620/540/540 

weighted avg 1.00 / 0.97 / 0.59 1.00 / 0.97 / 0.74 1.00 / 0.97 / 0.64 1620/540/540 
 

 

 

Tabla 8 

Desempeño alcanzado (%) por AE+CNN en el Escenario 2 

Clase 

Precisión 

(Entrenamiento / 

Prueba / 

Validación) 

Sensibilidad 

(Entrenamiento / 

Prueba / Validación) 

Puntuaje F1 

(Entrenamiento / 

Prueba / Validación) 

Soporte 

(Entrenamiento / Prueba /     

Validación) 

Barra de rotor rota 0.99 / 0.99 / 0.99 1.00 / 1.00 / 1.00 1.00 / 1.00 / 0.99 16200 / 5400 / 5400 

Cortocircuito en 

estator 
1.00 / 1.00 / 0.50 0.99 / 0.99 / 0.99 1.00 / 1.00 / 0.67 16200 / 5400 / 5400 

Rodamientos 

contaminados 
0.73 / 0.67 / 1.00 0.88 / 0.82 / 0.81 0.80 / 0.74 / 0.89 16200 / 5400 / 5400 

Saludable 0.85 / 0.77 / 0.00 0.68 / 0.59 / 0.00 0.75 / 0.67 / 0.00 16200 / 5400 / 5400 

     

accuracy - - 0.89 / 0.85 / 0.70 64800 / 21600 / 21600 

weighted avg 0.89 / 0.86 / 0.62 0.89 / 0.85 / 0.70 0.89 / 0.85 / 0.64 64800 / 21600 / 21600 

 

 

4.3 RESULTADOS ALCANZADOS PARA EL ESCENARIO 3 

En este escenario los conjuntos de datos de operación normal utilizados en entrenamiento, prueba y test son todos diferentes. 

Según la Tabla 4, estos datos caracterizan la operación saludable del motor en diferentes configuraciones o regímenes entre 

el motor y la bomba. A diferencia del segundo escenario, el desempeño de Random Forest y AE+CNN decaen juntos para las 

etapas de prueba, y validación. Tal como se aprecia en las Tablas 9 y 10, existe una elevada sensibilidad a los cambios en el 

reglaje del motor que se traduce en numerosas falsas alarmas, en este caso asociadas a los fallos de cortocircuito y rodamientos. 

La Tabla 9 muestra que el modelo AE+CNN no alcanza un desempeño superior respecto a Random Forest, excepto en el 

aislamiento del fallo relacionado a barra rota. La Fig. 7 ilustra y compara la matriz de confusión de Random Forest y AE+CNN 

considerando las etapas de prueba y validación. 
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Figura 6 

 Matrices de confusión para etapas de prueba y validación obtenidas en el escenario 2: (a) Random Forest, (b) AE+CNN. 

Tabla 9 

Desempeño alcanzado (%) por Random Forest en el Escenario 3 

Estado de operación 

del motor 

Precisión 

(Entrenamiento / 

Prueba / 

Validación) 

Sensibilidad 

(Entrenamiento / 

Prueba / Validación) 

Puntuaje F1 

(Entrenamiento / 

Prueba / Validación) 

Soporte 

(Entrenamiento /   Prueba /    

Validación) 

Barra de rotor rota 1.00 /1.00 / 0.72 1.00 / 1.00 / 1.00 1.00 / 1.00 / 0.84 405 / 135/ 135 

Cortocircuito en 

estator 
1.00 / 1.00 / 0.62 1.00 / 1.00/ 1.00 1.00 / 1.00 / 0.77 405/135/135 

Rodamientos 

contaminados 
1.00 / 0.98 / 1.00 1.00 / 0.75 / 0.73 1.00 / 0.85 / 0.85 405/135/135 

Saludable 1.00 / 0.89 / 0.00 1.00 / 0.99 / 0.00 1.00 / 0.94 / 0.00 405/135/135 

     

accuracy - - 1.00 / 0.95 / 0.68 1620/540/540 

weighted avg 1.00 / 0.95 / 0.59 1.00 / 0.95 / 0.68 1.00 / 0.94 / 0.61 1620/540/540 

 

Tabla 10 

Desempeño alcanzado (%) por AE+CNN en el Escenario 3 

Clase 

Precisión 

(Entrenamiento / 

Prueba / 

Validación) 

Sensibilidad 

(Entrenamiento / 

Prueba / Validación) 

Puntuaje F1 

(Entrenamiento / 

Prueba / Validación) 

Soporte 

(Entrenamiento / Prueba /     

Validación) 

Barra de rotor rota 1.00 / 0.99 / 1.00 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 16200 / 5400 / 5400 

Cortocircuito en 

estator 
1.00 / 1.00 / 0.50 1.00 / 0.99 / 1.00 1.00 / 1.00 / 0.67 16200 / 5400 / 5400 

Rodamientos 

contaminados 
0.70 / 0.53 / 1.00 0.63 / 0.47 / 0.51 0.66 / 0.50 / 0.68 16200 / 5400 / 5400 

Saludable 0.82 / 0,75 / 0,00 0.86 / 0.79 / 0.00 0.84 / 0.77 / 0.00 32400 / 10800 / 5400 

     

accuracy - - 0.87 / 0.81 / 0.63 81000 / 27000 / 21600 

weighted avg 0.88 / 0.82 / 0.62 0.87 / 0.81 / 0.63 0.88 / 0.81 / 0.58 81000 / 27000 / 21600 

(a)                                                                             
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4.4 RESULTADOS ALCANZADOS PARA EL ESCENARIO 4 

Los resultados obtenidos por Random Forest y AE+CNN en el cuarto escenario experimental se ilustran en las Tablas 11 y 

12. Como en el caso anterior, se tiene en cuenta la información en mostrada en el Tabla 3 para realizar la partición de los 

datos disponible en las etapas de entrenamiento, prueba, y validación. La comparación también se realiza con base en las 

métricas de Precisión, Sensibilidad y Puntaje de F1-score. Los resultados derivados de esta configuración muestran que el 

desempeño de Random Forest y AE+CNN decae en las etapas de validación. No obstante, Random Forest alcanza un 

desempeño global que es superior respecto a AE+CNN. La Tabla 11 confirma que el modelo Random Forest aprende 

acertadamente los patrones de fallos relacionados con la rotura de la barra de rotor y cortocircuito en estator, pero confunde 

la operación saludable con los patrones asociados a rodamientos contaminados. La Tabla 12 muestra que AE+CNN tiende a 

confundir patrones de operación saludable con los estados de fallos por cortocircuito en estator y rodamientos contaminados. 

La Fig. 8 utiliza la perspectiva de la matriz de confusión para ilustrar cómo Random Forest y AE+CNN se manejan durante 

el reconocimiento de los patrones asociados estos estos estados de operación considerando las etapas de prueba y validación. 

En ambos clasificadores, se evidencia un desempeño superior al observado en el segundo y tercer escenario.  Sin embargo, el 

rendimiento alcanzado por Random Forest y AE+CNN continúa siendo inferior al obtenido como línea de comparación en el 

primer escenario. 

 
 

  

Figura 7 

 Matrices de confusión para etapas de prueba y validación obtenidas en el escenario 3: (a) Random Forest, (b) AE+CNN. 

 

 

 

 

(a)                                                                             
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Tabla 11 

 Desempeño alcanzado (%) por Random Forest en el Escenario 4 

Estado de operación 

del motor 

Precisión 

(Entrenamiento / 

Prueba / 

Validación) 

Sensibilidad 

(Entrenamiento / 

Prueba / Validación) 

Puntuaje F1 

(Entrenamiento / 

Prueba / Validación) 

Soporte 

(Entrenamiento /   Prueba /    

Validación) 

Barra de rotor rota 1.00 /1.00 / 1.00 1.00 / 1.00 / 1.00 1.00 / 1.00 / 1.00 405 / 135/ 135 

Cortocircuito en 

estator 
1.00 / 0.99/ 1.00 1.00 / 1.00/ 1.00 1.00 / 1.00 / 1.00 405/135/135 

Rodamientos 

contaminados 
1.00 / 0.95 / 0.61 1.00 / 0.96 / 0.93 1.00 / 0.96 / 0.73 405/135/135 

Saludable 1.00 / 0.98/ 0.85 1.00 / 0.97 / 0.39 1.00 / 0.98 / 0.54 405/135/135 

     

accuracy - - 1.00 / 0.98 / 0.83 1620/540/540 

weighted avg 1.00 / 0.98 / 0.87 1.00 / 0.98 / 0.83 1.00 / 0.98 / 0.82 1620/540/540 

 

Tabla 12 

Desempeño alcanzado (%) por AE+CNN en el Escenario 4 

Clase 

Precisión 

(Entrenamiento / 

Prueba / 

Validación) 

Sensibilidad 

(Entrenamiento / 

Prueba / Validación) 

Puntuaje F1 

(Entrenamiento / 

Prueba / Validación) 

Soporte 

(Entrenamiento / Prueba /     

Validación) 

Barra de rotor rota 0.99 / 0.97 / 0.99 1.00 / 1.00 / 1.00 0.99 / 0.99 / 1.00 16200 / 5400 / 5400 

Cortocircuito en 

estator 
0.74 / 0.73 / 1.00 0.64 / 0.56 / 0.52 0.69 / 0.63 / 0.68 16200 / 5400 / 5400 

Rodamientos 

contaminados 
0.82 / 0.77 / 0.51 0.87 / 0.87 / 0.83 0.85 / 0.81 / 0.63 16200 / 5400 / 5400 

Saludable 0.76 / 0.73 / 0.24 0.79 / 0.75 / 0.20 0.78 / 0.74 / 0.22 32400 / 10800 / 5400 

     

accuracy - - 0.82 / 0.79 / 0.64 81000 / 27000 / 21600 

weighted avg 0.83 / 0.80 / 0.69 0.82 / 0.79 / 0.64 0.83 / 0.79 / 0.63 81000 / 27000 / 21600 

 

4.5 ASPECTOS RELEVANTES EN EL ANÁLISIS EXPERIMENTAL 
 

Durante la fase experimental, se observó que el modelo Random Forest logra mantener un rendimiento elevado siempre que 

los datos de entrenamiento y prueba procedan del mismo régimen de trabajo para el sistema motor-bomba. Sin embargo, el 

desempeño del modelo presenta una disminución abrupta en precisión cuando datos adquiridos proceden de otros regímenes 

de trabajos. Este comportamiento sugiere la existencia de un fenómeno conocido como desplazamiento de dominio intra-clase 

(intra-class domain shift) donde instancias de una misma clase nominal, que en este caso representan el estado de operación 

saludable del motor, tienen variaciones sutiles pero relevantes en su distribución estadística. Se conoce que estas diferencias 

pueden deberse a múltiples factores como diferencias en la carga mecánica del motor, ruido electrónico, o incluso cambios 

en la calibración de los sensores. El modelo Random Forest es altamente sensible a tales variaciones, ya que basa sus 

decisiones en umbrales construidos sobre la distribución exacta de los datos vistos durante el entrenamiento. En este caso, 

Random Forest enfoca la decisión discriminante en las características espectrales y las medidas estadísticas dentro de bandas 

de frecuencia específicas como la magnitud máxima, la media y la desviación estándar en intervalos de 100 Hz (por ejemplo: 

band_9700_9800_max_magnitude, band_7400_7500_mean_magnitude y band_4300_4400_std_magnitude, entre otras). 

Además, en cuanto a relevancia, más del 95% de las variables se asignaron exclusivamente al campo de la frecuencia. Por 

otro lado, las propiedades tradicionales del dominio temporal como la media global o curtosis, exhibieron una importancia 

considerablemente inferior para la decisión final del modelo. Este resultado es técnicamente coherente ya que los fallos en los 

motores eléctricos suelen manifestarse en modulaciones de alta frecuencia, armónicos, o componentes específicas del espectro 

de corriente, para rangos específicos de frecuencia según el tipo de fallo. En este sentido, el análisis por bandas permite aislar 

y detectar estos patrones característicos mientras que las métricas globales del dominio del tiempo tienden a promediar la 

señal y en ocasiones no capturan adecuadamente los detalles espectrales distintivos de cada condición de operación. Por otro 

lado, los resultados muestran que el modelo AE+CNN es capaz de aprender y reproducir patrones característicos en señales 

de corriente para la detección de fallos en motores eléctricos, pero su desempeño solo es elevado ante condiciones de operación 

con patrones bien definidos. Ambos modelos, Random Forest y AE+CNN, presentan limitaciones importantes en su capacidad 

de generalización, especialmente frente a cambios en el reglaje del motor. Estas observaciones subrayan la importancia de 

incorporar mayor diversidad de datos en el entrenamiento, aplicar estrategias de regularización más robustas y explorar 



Guillermo L. Zapata Álvarez, Rafael Andrade Cartegoso, José M. Bernal de Lázaro 

RIELAC, Vol. 46 (Publicación Continua):e9713 (2025) ISSN:1815-5928 

 

15 

 

técnicas de adaptación de dominio para construir sistemas más confiables y adaptables en contextos reales de operación 

industrial. 

 

  

  

Figura 8 

 Matrices de confusión para etapas de prueba y validación obtenidas en el escenario 4: (a) Random Forest, (b) AE+CNN. 
 

6.- CONCLUSIONES 

En el presente trabajo se analizó la viabilidad de Random Forest y AE+CNN para detectar fallas operativas en motores 

eléctricos de jaula de ardilla, considerando exclusivamente señales de corriente. Los resultados obtenidos refuerzan el enfoque 

adoptado, y confirman que trabajar en el dominio de la frecuencia proporciona mayor capacidad discriminante en vista de 

detectar los fallos eléctricos y mecánicos que tienen lugar en los motores eléctricos de inducción. Aunque los resultados 

alcanzados son alentadores, se evidencia un impacto negativo del fenómeno de desplazamiento de dominio intra-clase 

relacionado a diferencias físicas en la alineación entre motor y carga. Por tanto, en vista de futuras investigaciones, se hace 

necesario realizar experimentos controlados donde se varíe explícitamente la configuración motor-bomba para desarrollar 

estrategias de normalización específicas o incluso etiquetado por configuración. Se recomienda, además, análisis adicionales 

utilizando señales de vibración y señales de corriente por fase. Aunque nuestro trabajo se centra exclusivamente en aprovechar 

las señales de corriente, los resultados sugieren que dicha variable puede no ser suficiente para capturar ciertos fallos y 

distinguir entre estados saludables con alta variabilidad. El análisis conjunto de señales de vibración y corriente permitiría 

mejorar la capacidad de generalización de los modelos y aportar información complementaria útil para la clasificación. 
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