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ABSTRACT / RESUMEN 

The use of Inertial Measurement Units (IMUs) has emerged as a promising technique for estimating stride length during 

human gait. This research presents a new analytical approach to estimate this parameter. The estimation procedure is based 

on the identification and use of stability intervals before and after the swing phase of the sensor-mounted foot. The algorithm 

proposes attaching the inertial sensor to the forefoot. A database was built to validate the algorithm. The data were 

incorporated into the analysis gradually to gain insight into the sufficiency of the data used. Several metrics were computed, 

and the results revealed that the proposed algorithm exhibits a performance that outperforms the majority of the results 

reported by other studies to date. 
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RESUMEN 

El uso de Unidades de Medición Inercial (UMI) se ha convertido en una técnica prometedora para estimar la longitud de 

la zancada durante la marcha humana. Esta investigación presenta un nuevo enfoque analítico para estimar este 

parámetro. El procedimiento de estimación se basa en la identificación y el uso de intervalos de estabilidad antes y después 

de la fase de balanceo del pie con sensor. El algoritmo propone la fijación del sensor inercial al antepié. Se creó una base 

de datos para validar el algoritmo. Los datos se incorporaron gradualmente al análisis para comprender su suficiencia. 

Se calcularon diversas métricas y los resultados revelaron que el algoritmo propuesto presenta un rendimiento superior al 

de la mayoría de los resultados reportados en otros estudios hasta la fecha. 

Palabras Claves: marcha humana; sensor inercial; estimación de la longitud de la zancada; intervalos de estabilidad 

Estimación de la longitud de zancada mediante el uso de un único sensor inercial y la aplicación de un método basado en 

la detección de intervalos de estabilidad 

1. -INTRODUCTION 

The early evaluation of symptoms related to functional impairment allows for the early diagnosis of diseases and their possible 

complications, thus helping to determine the most appropriate treatment for each type of pathology [1]. The early detection 

of frailty in the elderly and the timely application of diagnostic, therapeutic, and rehabilitative techniques can positively impact 

their quality of life [2]. Several research works have been carried out to study the importance of physical performance 

indicators for classifying the functional capacity of elderly people. Among the most used parameters for evaluating physical 

performance are those related to gait [3]. 

Numerous strategies for gait evaluation have been proposed, leading to the identification of qualitative and quantitative 

criteria; however, quantitative evaluation strategies are the most developed, as they are objective, allow for a more complete 

assessment, and avoid observational errors [4]. Usually, laboratories for the study of human gait obtain spatiotemporal 

parameters simply through the use of measuring tapes, stopwatches, and systematic visual analysis performed by professionals 

[5]. 
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Among human gait parameters, stride length is one of the most important because it is related to movement efficiency and 

economy [6]. Furthermore, stride length can also be related to a person's posture and balance (e.g., an abnormal stride length 

can disrupt body alignment and increase the risk of injury or muscle imbalances) [6]. 

In recent years, various systems and equipment have emerged to obtain objective data for quantitative and effective gait 

evaluation through kinematics, dynamics, and other aspects such as the electrical activity of the muscles during movement 

[5]. In this sense, when this highly specialized technology is used for the analysis of clinical gait conditions, it is referred to 

as instrumented gait analysis. The most popular methods are those based on cameras, force platforms, or the use of portable 

sensors placed on various parts of the body [2]. 

An Inertial Measurement Unit (IMU) is capable of measuring position, orientation, and velocity [7]. Since this type of sensor 

does not require an external reference to obtain velocity and angular position, its fields of application are broad and diverse 

[8]. Such a device can be placed directly on specific locations of the body to understand joint kinematics [9]. Compared with 

other systems, the placement of these sensors does not require much time nor the involvement of experts in the process. IMUs 

placed on the lower limbs allow for gait analysis that is not restricted to laboratory conditions [9]. Despite the aforementioned 

advantages, the use of inertial sensors carries certain disadvantages, such as the inability to measure stride length directly 

[10]. 

In [11], an IMU, comprising three orthogonally oriented accelerometers, three gyroscopes, and three magnetometers, was 

attached to the participant's instep, and signal samples were acquired at 100 Hz. A position estimation algorithm was 

implemented based on the accumulation of foot displacements along the horizontal orientation. To detect steps, the authors 

applied two alternatives: one based on processing the angular velocity signals from the gyroscopes, and the other based on 

processing the magnetic field signals from the magnetometers. The method exhibited a relative error of around 5%. 

In [12], a study focused on extracting each individual stride length using an easy-to-use algorithm that required only one 

inertial sensor attached to the subject's shank. The mean relative error was lower than 6% for the healthy group and 10.3% for 

the Parkinson's disease group. 

A deep learning-based step length estimation model, adaptable to different phone carrying positions and requiring neither 

individual stature information nor constrained spatial conditions, was proposed in [13]. This method achieved a mean relative 

error of 3.01%. 

Wang and colleagues [14] combined smartphone mode recognition with stride length estimation to provide an accurate 

walking distance estimation. They applied multiple classification models to recognize five smartphone modes (calling, 

handheld, pocket, armband, swing). In addition to using a combination of time-domain and frequency-domain features from 

the built-in accelerometers and gyroscopes during the stride interval, higher-order features were constructed based on 

established studies to model stride length using a machine learning regression model. The mean absolute error and relative 

error were 0.036 m and 3.04%, respectively. 

In [15], a stride-length estimation method based on a long short-term memory network and denoising autoencoders was 

presented. This method achieved a stride-length error rate of 4.59% and a mean absolute error of 0.058 m. 

A single convolutional neural network model to predict the stride length of running and walking and to classify the running 

or walking type per stride was proposed in [16]. The model trains its pretext task using self-supervised learning on a large 

unlabeled dataset for feature learning, and its downstream task on the stride length estimation and classification tasks using 

supervised learning with a small labeled dataset. The proposed model achieved a mean relative error and a mean absolute 

error of 7.44% and 0.062 m, respectively, for stride length estimation. 

In [17], a step length estimation model that utilizes acceleration magnitude was presented. The model was constructed by 

applying principal component analysis to data collected from anatomical landmarks on the human body during walking, using 

a highly accurate optical measurement system. The performance of the proposed model was evaluated for four typical 

smartphone positions for long-term human walking, producing an overall mean absolute stride length estimation error of 

0.064 m. 

A study presented in [18] aimed to develop an improved foot trajectory and stride length estimation method for level-ground 

running based on foot displacement. The accelerations and angular velocities of the left and right feet were measured with 

two IMUs mounted on the dorsum of each foot. In this study, foot trajectories between two consecutive and ipsilateral 

midstance instances were estimated using two methods: (1) a spatial error-correcting algorithm and (2) a velocity-based linear 

dedrifting technique. For different running velocity categories, the best mean absolute error was 0.05 m. 

A study addressing an artificial intelligence-empowered and cost-effective gait monitoring system was presented in [19]. A 

pair of intelligent shoes with a single inertial sensor and a smartphone application were developed as a gait monitoring system 
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to detect the user’s gait cycle, stand phase time, swing phase time, stride length, and foot clearance. This paper applied an 

Extreme Learning Machine algorithm for stride length estimation. The Vicon motion capture system was used to verify the 

accuracy of the gait metrics, and the results exhibited an RMSE of 0.0184 m. 

Several machine-learning models to estimate step length based on data from a single lower-back inertial measurement unit 

worn by subjects with different neurological conditions, including Parkinson’s disease and healthy controls, were developed 

and presented in [20]. For a single step, the best model showed an RMSE of 0.0608 m. 

In summary, the approaches implemented for stride length estimation are primarily based on analytical methods or the 

application of machine learning techniques. Most analytical approaches usually require dealing with inherent problems, such 

as the projection of the gravity acceleration vector on the three IMU axes and the gyroscope signal drift; together, these major 

issues affect task performance. On the other hand, machine learning techniques can overcome these drawbacks; however, the 

performance of the resulting models can be degraded when the method must process data not included in the validation 

database [13]. 

This work proposes an analytical method for stride length estimation. This method leverages the stability intervals that occur 

during the gait cycle for acceleration and velocity initialization and implements a new approach for rotation angle adjustment 

to minimize the drift effect. 

2.- MATERIALS AND METHODS 

2.1.- PROPOSED ALGORITHM 
Existing algorithms have exhibited significantly low effectiveness due to drift, vibration sensitivity, sensor limitations, and 

inaccurate integration with other systems [10]. This work proposes a new algorithm to obtain more accurate and reliable 

position estimates. Similar to the basic approach applied for stride length estimation, this algorithm is based on the analysis 

of IMU signals within the interval corresponding to the swing phase of the foot carrying the sensor. Consequently, the first 

step focuses on detecting the stability intervals that precede and follow the swing phase. 

2.1.1.- DETERMINATION OF THE PRECEDING AND FOLLOWING 

STABILITY PHASE INTERVALS 
To determine the stability intervals preceding and following the swing phase of the foot carrying the sensor, the longitudinal 

acceleration signal is proposed for use. This signal best represents the ascent and descent of the foot during the swing phase; 

it was therefore assumed that it could reveal the stability intervals more clearly. The analysis then focuses on identifying the 

extreme points—the points of starting stability (SSP) and ending stability (ESP)—which correspond to the preceding and 

following stability intervals around each swing phase. Figure 1 shows an example of a longitudinal acceleration signal from 

an IMU mounted on the forefoot during gait. 

 

Figure 1 

Example of longitudinal acceleration signal (IMU mounted at the forefoot) during a gait. Points of starting stability and ending 

stability, SSP and ESP. 
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The ESPs are determined by computing the variance of a 0.4 s moving window (shifting from left to right). The ending points 

of every set of consecutive windows with a variance below 0.8 m²/s⁴ (a threshold selected after a detailed empirical study of 

the database signals) are identified as the ESPs. 

The SSPs are determined by computing the variance of a 0.2 s window that moves from each ESP to the left. The ending point 

of a set of consecutive windows with a variance below 0.5 m²/s⁴ (similar to the ESP detection, this threshold was selected 

after a detailed empirical study of the database signals) is identified as an SSP. 

Having identified the stability intervals, the next step is to estimate the distance traveled by the foot in the anteroposterior 

direction between these intervals; that is, the stride length. 

 

 

2.1.2.- ESTIMATION OF THE ANTEROPOSTERIOR DISPLACEMENT OF 

THE IMU-MOUNTED FOOT BETWEEN CONSECUTIVE STABILITY 

INTERVALS 
As previously mentioned, the interval between the stability intervals is used to estimate the distance traveled by the foot. 

However, the proposed algorithm also uses the information within both the preceding and following stability intervals. These 

intervals are used to perform adjustments to the estimated parameters, as will be explained later. In this algorithm, the 

preceding stability interval is divided into two equal-length subphases: subphase 1 and subphase 2 of the preceding stability 

interval (see Figure 2). 

 

Figure 2 

Example of longitudinal acceleration signal (IMU mounted at the forefoot) during a gait. Points of starting stability and ending 

stability, SSP and ESP. 

A diagram of the proposed algorithm is shown in Figure 3. The procedure for estimating a single stride length using signals 

from an IMU placed on the forefoot is carried out as follows: 

1. Using the signals from the 3D accelerometer and the 3D magnetometer, the rotation angles within subphase 1 of the 

preceding stability phase and the following stability phase intervals are determined. These angles represent the initial 

and final orientation of the inertial sensor during a stride execution. They are commonly known as Euler angles: roll 

(ϕ), pitch (θ), and yaw (ψ), as shown in Figure 4. These angles constitute a set of three angular coordinates that define 

the orientation of the system relative to a reference frame. This calculation involves the signals from the 

accelerometers and magnetometers and is performed using the following equations: 
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𝜓 = tan−1  (
𝐵𝑦
𝐵𝑥
) (3) 

where 𝐴𝑋, 𝐴𝑌, and 𝐴𝑍 are the signals from the IMU's accelerometers, and 𝐵𝑌 and 𝐵𝑋 are the magnetic field 

measurements on the Y and X axes, respectively. 

 

Figure 3 

Diagram of the proposed algorithm. 

 

 

Figure 4 

Rotation angles representation. 
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2. The IMU's rotation angles are determined using the 3D gyroscope signals within the interval comprising subphase 2 

of the preceding stability phase, the swing phase, and the following stability phase. 

To reduce the impact of drift, a correction is applied to the angle measurements within the interval covering subphase 

2 of the preceding stability phase, the swing phase, and the following stability phase. This correction ensures that the 

average value of the rotation angles within the following stability phase—estimated from the 3D gyroscope signals—

approximates those estimated using the 3D accelerometer and 3D magnetometer. The correction consists of applying 

a linear variation to the angle values equal to 
𝑛

𝑁
𝛥, where nn is the sample number and 𝛥 is a parameter chosen such 

that the mean of the rotation angles within the following stability interval (estimated from the gyroscope signals) 

equals the mean of the rotation angles estimated from the 3D accelerometer and the 3D magnetometer. The value of 

𝛥 is calculated as follows (see Appendix A): 

∆ =  
∑ 𝑎𝑛𝑔𝑔(𝑘)
𝑁
𝑘=𝑃+𝑀+1  −  𝐿 ∙ 𝐹𝑖𝑛𝑎𝑙𝐴𝑛𝑔𝑙𝑒𝑀𝑒𝑎𝑛𝑉𝑎𝑙𝑢𝑒

∑
𝑘

𝑁
𝑁
𝑘=𝑃+𝑀+1 

 (4) 

where 𝑎𝑛𝑔𝑔(𝑘) is the value of sample 𝑘 of the rotation angle obtained from the corresponding gyroscope signal; 

𝐹𝑖𝑛𝑎𝑙𝐴𝑛𝑔𝑙𝑒𝑀𝑒𝑎𝑛𝑉𝑎𝑙𝑢𝑒 is the mean of the rotation angles within the following stability interval, estimated from the 

3D accelerometer and 3D magnetometer; 𝑃 is the number of samples in subphase 2 of the preceding stability phase; 

𝑀 is the number of samples in the swing phase; and 𝐿 is the number of samples in the following stability phase. 

3. By applying a rotation to the IMU's coordinate axes, the gravity vector components are removed from the 3D 

accelerometer signals. For the rotation procedure in the interval covering subphase 2 of the preceding stability phase 

and the swing phase, the rotation angles estimated by the 3D gyroscope in Step 2 are used. For the rotation procedure 

in the interval corresponding to the following stability phase, the rotation angles estimated by the 3D accelerometer 

and the 3D magnetometer in Step 1 are used. The following rotation matrices are applied [21]: 

𝑅𝑥(𝜙) =  [
1 0 0
0 cos𝜙 −sin𝜙
0 sin𝜙 cos𝜙

] (5) 

𝑅𝑦(𝜃) =  [
cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃
] (6) 

𝑅𝑧(𝜓) =  [
cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

] 
(7) 

Several Euler angle conventions exist to define rotation matrices, differing in the sequence of rotations around the 

three coordinate axes. The selected convention is ZYX, commonly used in orientation and position estimation 

applications, and is given by the following equation: 

𝑅𝑟𝑜𝑡 = 𝑅𝑧(𝜓) ∙ 𝑅𝑦(𝜃) ∙ 𝑅𝑥(𝜙) (8) 

The resulting rotation matrix is multiplied by the vector formed by the X, Y, and Z components of the acceleration 

signal obtained directly from the 3D accelerometer, yielding new, rotated acceleration components. 

4. The double integration of the rotated acceleration signals would, in principle, result in the displacement signal. 

However, since the effect of drift on the rotation angle estimation is not completely removed, the velocity estimated 

by integrating the acceleration signals, and the subsequent displacement estimated from this velocity, will not be 

optimal. Therefore, a two-step adjustment is proposed: first on the rotated acceleration signals, and then on the 

velocity signals resulting from integrating the adjusted accelerations. 

a. For the interval covering both the swing phase and the following stability phase, a forward linear adjustment 

equal to 
𝑛

𝑁𝑎1

∆𝑎1is applied to the samples of the signal being adjusted, where 𝑛 is the sample index and 𝑁𝑎1 is 

the total number of samples in the interval. A schematic showing the arrangement of the samples and their 

corresponding indices is presented in Figure 5 (this figure uses a fictitious signal for illustrative purposes). 

This first adjustment ensures that the average of the samples within the following stability phase—which 

will be processed by the subsequent integration—is equal to zero. This zero-average condition is based on 
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the assumption that, within a stability interval, the values for both acceleration and velocity should be zero. 

The parameter Δ𝑎1 is determined as follows (see Appendix B): 

Δ𝑎1 = 
∑ 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑜𝐼𝑛𝑡(𝑘)
𝑁𝑎1
𝑘=𝑀+1 

∑
𝑘

𝑁𝑎1

𝑁𝑎1
𝑘=𝑀+1 

 (9) 

where 𝑆𝑖𝑔𝑛𝑎𝑙𝑇𝑜𝐼𝑛𝑡(𝑘) is the value of sample 𝑘 of the signal (acceleration or velocity) to be adjusted, and 

𝑀 is the number of samples within the swing phase. 

 

Figure 5 

Example of sample numbering for the forward adjustment applied. 

b. For the interval covering both subphase 2 of the preceding stability phase and the swing phase, a backward 

linear adjustment equal to 
𝑛

𝑁𝑎2

𝛥𝑎2  is applied to the samples of the signal that were previously adjusted in 

the forward manner. Here, 𝑛 is the sample index and 𝑁𝑎2  is the total number of samples in this interval. 

This second adjustment ensures that the average of the samples within subphase 2 of the preceding stability 

phase—which will be processed by the subsequent integration—is equal to zero. This condition is based on 

the assumption that, within a stability interval, the values for both acceleration and velocity should be zero. 

In this backward adjustment, the samples are processed in reverse order. The sample with index 𝑛 = 1 

corresponds to the last sample of the swing phase, and the sample with index 𝑛 = 𝑁𝑎2 corresponds to the 

first sample of subphase 2 (see Figure 6). The parameter 𝛥𝑎2 , determined using the same principles as 𝛥𝑎1 , 

is calculated as follows: 

𝛥𝑎2 = 
∑ 𝐴𝑑𝑗𝑆𝑖𝑔𝑛𝑎𝑙(𝑘)
𝑁𝑎2
𝑘=𝑀+1 

∑
𝑘

𝑁𝑎2

𝑁𝑎2
𝑘=𝑀+1

 (10) 

 

Figure 6 

Example of sample numbering for the backward adjustment applied. 

5. After applying this two-step adjustment to the rotated acceleration signals, a first integration is performed on the 

resulting signals over the interval covering subphase 2 of the preceding stability phase, the swing phase, and the 

following stability phase. The result is the velocity signal. Next, a second two-step adjustment is applied to the 

velocity signal, followed by its integration over the same interval. The final outcome is the displacement signal. 

2.2.- EXPERIMENT AND VALIDATION 
The validation of the algorithm proposed in Section IV is presented in this section. A database comprising IMU signals 

collected during experimental trials was constructed for this purpose. In the experimental setup, participants walked along a 

runway featuring equidistant guidelines spaced at 0.01 m intervals (see Figure 7). A single IMU was placed on the forefoot 
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(see Figure 8). Three video cameras were positioned along and beside the runway to obtain reference stride length 

measurements. 

 

Figure 7 

Walking across the runway. 

 

 

Figure 8 

IMU placement location. 

The IMU-based wearable device used in this research was developed by the Signal Processing Applications Group (GAPS) 

at Cujae University and the Cuban Center for Neuroscience. The device incorporated an InvenSense MPU-92/65 sensor and 

was designed to transmit digitized IMU signals to a computer via Bluetooth. The MPU-92/65 is a 9-axis motion and orientation 

sensor that combines an accelerometer, gyroscope, and magnetometer on a single chip, providing measurements along all 

three axes (X, Y, Z). A sampling frequency of 1 kHz was used during the tests. 

Accelerometer, gyroscope, and magnetometer signals were recorded while each subject walked a 5-meter path along the 

runway. The 30 subjects involved in the measurements—healthy men and women aged between 18 and 35 years—provided 

informed consent prior to their participation. The study was conducted in accordance with the Declaration of Helsinki, and 

the protocol was approved by the Scientific Committee of the Faculty of Telecommunications and Electronics. 

In this work, the stride length estimation algorithm was validated using the constructed dataset. The following performance 

metrics were employed: 

 the mean absolute error, 

𝐸𝑎𝑏𝑠 = ∑
| 𝑥𝑖 − 𝑥̂𝑖|

𝑁

𝑁

𝑖=1

 (11) 

 the mean relative error, 

𝐸𝑟𝑒𝑙 = 
1

𝑁
∑
| 𝑥𝑖 − 𝑥̂𝑖|

𝑥𝑖

𝑁

𝑖=1

 (12) 

 the RMSE value, 

𝑅𝑀𝑆𝐸 = √
∑ |𝑥𝑖 − 𝑥̂𝑖|

2𝑁
𝑖=1

𝑁
 (13) 
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 the coefficient of determination, 

𝑅2 = 1 −
 ∑ (𝑥𝑖 − 𝑥̂𝑖)

2𝑁
𝑖=1

∑ (𝑥̂𝑖 − 𝑥̅̂)
2𝑁

𝑖=1

 (14) 

where 𝑥𝐼 is the reference stride length, 𝑥̂𝐼 is the estimated stride length, 𝑁 is the number of stride realizations, and 𝑥̅̂ is the 

average of the 𝑁 predicted values. 

Despite being less conventional, the coefficient of determination 𝑅2 was employed because it allows for a global assessment 

of the quality and consistency of the estimation algorithm. This index represents the percentage of variability observed in the 

measured values that is captured by the estimation algorithm. An 𝑅2 value close to 100 % means that the estimated stride 

length values closely follow the behavior of the measured real values. 

To assess the consistency of the results, 𝐸𝑎𝑏𝑠, 𝐸𝑟𝑒𝑙, 𝑅𝑀𝑆𝐸 and 𝑅2 were computed by gradually including data in the analysis, 

one stride at a time. This approach allows for observing the stabilization of the metrics' trends, indicating when the amount of 

analyzed data can be considered sufficient and the results deemed reliable. No more than 100 stride realizations were needed 

to achieve this stabilization. 

Because the Shapiro-Wilk test [22] indicated that the algorithm's measurement errors were not normally distributed, non-

parametric tests were employed to evaluate its performance. The following statistical tests and inference methods were used: 

 Wilcoxon Signed-Rank Test [23]: Applied to detect whether the algorithm showed a consistent tendency to 

overestimate or underestimate stride length. This test evaluates whether the median of the differences between the 

true and estimated measurements differs significantly from zero (𝐻0: 𝑀𝑒𝑑𝑖𝑎𝑛 = 0), considering both the sign and 

relative magnitude of the errors. 

 Intraclass Correlation Coefficient (ICC) [24]: Applied to assess the agreement between the algorithm and the 

reference method, specifically using the 3,1 model. This index measures the degree of absolute agreement between 

two measurement methods, taking into account both between-subjects variability and error variability (𝐻₀: 𝐼𝐶𝐶 =
 0). 

 Bland-Altman Analysis [24]: Applied to characterize the overall behavior of the error, including its magnitude and 

dispersion. This analysis uses the median as the bias estimator and percentiles as limits of agreement. 

 Bootstrap Confidence Intervals [25]: Applied to estimate 95% confidence intervals for the 𝐸𝑎𝑏𝑠 and 𝑅𝑀𝑆𝐸 metrics 

using a Bootstrap resampling procedure. This method allows for assessing the stability of the metrics against sample 

variations without assuming any specific distribution for the error. 

 

3.- RESULTS AND DISCUSSION 
Two examples of the results from applying the procedure to determine the preceding and following stability phase intervals 

are shown in Figure 9. This figure shows the detected SSPs and ESPs with vertical magenta and green lines, respectively. It 

can be observed that an SSP-ESP pair is detected on both sides of each swing phase of the foot carrying the IMU. Both signals 

correspond to the Z-axis acceleration of the inertial sensor attached to the forefoot. Figures 9a and 9b show acceleration 

signals acquired from subjects who took 5 and 3 steps, respectively, with the instrumented foot. In both cases, a preceding 

and a following stability interval were successfully detected for each individual step. 

Figure 10 presents the results of applying the displacement estimation algorithm to the steps shown in Figure 9. Figures 10a 

and 10b depict the estimated displacement signals corresponding to the sequences of 5 and 3 steps, respectively. 
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a) b) 

Figure 9 

Samples of the results achieved from the application of the procedure for determination of the preceding and following stability 

phase intervals (SSPs and ESPs detection): (a) 5 and (b) 3 steps with the IMU-mounted foot (Z-axis accelerations of the inertial 

sensor attached to the forefoot of the foot). 

 

 

 

 

a) b) 

Figure 10 

Samples of displacement signals estimated by the algorithm. a) Displacement signals corresponding to 5 steps. b) Displacement 

signals corresponding to 3 steps. 

 

The total displacement signal, representing the total traveled distance, can be reconstructed by concatenating the individual 

displacement signals estimated between stability intervals. Figure 11 shows (blue line) the total displacement signals 

synthesized from the individual step displacements shown in Figure 10. Figures 11a and 11b show the total displacement 

signals corresponding to the sequences of 5 and 3 steps, respectively. In Figure 11, the red line represents the reference (true) 

value of the traveled distance. 
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a) b) 

Figure 11 

Total displacement signals synthetized from the displacement signal corresponding to the single steps shown in Figure 10. a) Total 

displacement signal corresponding to 5 steps. b) Total displacement signal corresponding to 3 steps. 

 

The proposed algorithm was validated using the IMU signals database and the metrics, statistical test and inference methods 

defined in Section V. As previously explained, the algorithm was applied to a data subset that was gradually increased to 

ensure the reliability of the outcomes. The trends of 𝐸𝑎𝑏𝑠 and 𝑅𝑀𝑆𝐸 are shown in Figure 12, and the trends of 𝐸𝑟𝑒𝑙 and 𝑅2 are 

shown in Figure 13. These figures demonstrate that the metrics stabilize for data from 80 realizations onward. Therefore, the 

amount of processed data can be considered sufficient to deem the results reliable. The final values obtained were:              

𝐸𝑎𝑏𝑠 = 0.031 𝑚, 𝑅𝑀𝑆𝐸 = 0.0412 𝑚, 𝐸𝑟𝑒𝑙 = 2.82 %, and 𝑅2 = 98.28 %. 

 

Figure 12 

Trends of the series of 𝑬𝒂𝒃𝒔 and 𝑹𝑴𝑺𝑬 values. 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 4 7 1013161922252831343740434649525558616467707376798285889194

M
E

T
E

R
S

SAMPLES

Mean Absolute Error RMSE



 

Fidel Hernández, Melissa Domínguez, Brenda Guitard, René Corvo, Jon Altuna 

RIELAC, Vol. 47 (Publicación Continua):e2601 (2026) ISSN:1815-5928 

 

12 

 

 

Figure 13 

Trends of the series of 𝑬𝒓𝒆𝒍 and 𝑹𝟐 values. 

To provide a qualitative comparison between the true stride lengths and the corresponding estimates from the algorithm, these 

values are presented in Figure 14. In this figure, the two sets of values—true stride lengths (blue) and estimated stride lengths 

(red)—are plotted after sorting the true values in increasing order. This graphical representation offers a qualitative assessment 

of the algorithm's effectiveness, showing that the estimated values closely match the true ones, thus demonstrating the 

algorithm's high accuracy. 

 

Figure 14 

True and estimated stride lengths. 

The results obtained from the proposed algorithm were compared with those from other research works, as presented in Table 

1. The table shows that the proposed algorithm outperforms the majority of the results reported in previous studies. The RMSE 

from the method presented in [19] is the only metric that performed slightly better than the value achieved in this work. In 

[19], a high-performance, artificial intelligence-empowered gait monitoring system was developed. However, it is important 

to note that while AI-based approaches offer versatility, their performance can degrade when analyzing subjects whose 

walking characteristics differ significantly from those represented in the training dataset [13]. 

 

 

0

20

40

60

80

100

1 4 7 1013161922252831343740434649525558616467707376798285889194

P
E

R
C

E
N

T
A

G
E

SAMPLES

Mean Relative Error R²

Paired values of measured and estimated stride lengths 



Fidel Hernández, Melissa Domínguez, Brenda Guitard, René Corvo, Jon Altuna 

RIELAC, Vol. 47 (Publicación Continua):e2601 (2026) ISSN:1815-5928 

 

13 

 

Table 1  

 Comparison of the performance achieved by the proposed algorithm with those achieved by previously developed 

algorithms  

 

Algorithm 
Mean absolute error 

(m) 

Mean relative error 

(%) 
RMSE (m) R² (%) 

Jimenez, 2009 [11] - 5 - - 

Sijobert, 2015 [12] - 6 - - 

Gu, 2019 [13] - 3.01 - - 

Wang, 2019 [14] 0.036 3.04 - - 

Wang, 2020 [15] 0.058 4.59 - - 

Sui, 2021 [16] 0.062 7.44 - - 

Vezocnik, 2021 [17] 0.064 - - - 

Suzuki, 2022 [18] 0.050 - - - 

Zhou, 2024 [19] - - 0.0184 96.17 

Zadka, 2024 [20] - - 0.0608 - 

Proposed algorithm 0.031 2.82 0.0412 98.28 

 

As previously mentioned, several statistical tests and inference methods were applied. The Wilcoxon Signed-Rank Test 

yielded a probability value of 𝑝 = 0.3965, indicating insufficient evidence to reject the null hypothesis that the median of the 

differences is zero. Therefore, the estimated values are close to the true values without a directional trend. This points to an 

absence of systematic bias in the algorithm, demonstrating the method's accuracy. Furthermore, the obtained ICC was 0.9913. 

As this value significantly exceeds the common threshold of 0.90, there is sufficient evidence to reject the null hypothesis that 

the 𝐼𝐶𝐶 = 0. According to established reliability criteria, values above 0.90 represent excellent agreement. This demonstrates 

a nearly perfect agreement between the estimated and actual measurements, evidencing the algorithm's high precision and 

stability in estimating stride length. This result suggests the possibility of replacing the true values with those estimated by 

the algorithm. 

The Bland-Altman analysis identified a median difference of 0.0015 m, which aligns with the Wilcoxon test result, and a 

variability range marked by agreement limits of −0.1098 m (lower) and 0.0625 m (upper), as shown in Figure 15. This 

analysis reveals no systematic bias—confirming the algorithm's accuracy in agreement with the Wilcoxon test—but it does 

show notable dispersion and moderate variability in the extreme differences. This dispersion is consistent with the high 

precision and stability of the estimates indicated by the obtained ICC. Finally, the 95 % Bootstrap confidence intervals for the 

𝐸𝑎𝑏𝑠 and 𝑅𝑀𝑆𝐸 metrics were [0.0262 m, 0.0369 m] and [0.034 m, 0.0483 m], respectively. Given that these intervals are 

narrow and that the calculated point metrics fall within their bounds, it can be concluded that these metrics are robust and 

reproducible. 

3.1.- A DEEPER ANALYSIS OF THE RESULTS 
In this work, a more detailed analysis was performed on the resulting estimations, particularly those that showed significant 

deviation from the corresponding true stride length values. The study determined that in most cases, the poorest results 

corresponded to the stride length estimation of the first step. The authors consider that this is related to the movement dynamics 

of a subject transitioning from a static position to motion. Presumably, this initial action establishes dynamics with particular 

characteristics compared to the subsequent steps taken once the subject is already in motion. The most critical evidence of 

this phenomenon was the non-negligible level of instability observed in the intervals preceding and following the swing phase 

for a considerable number of first steps. Consequently, the authors decided to exclude the first step from the algorithm's 

performance analysis. Following this procedure, the metrics were recalculated excluding the data from the first steps. The 

resulting values were: 𝐸𝑎𝑏𝑠 = 0.0271 m, 𝑅𝑀𝑆𝐸 = 0.0337 m, 𝐸𝑟𝑒𝑙 = 2.45 %, and 𝑅2 = 98.78 %. 

The new results were compared with the original baseline, Table 2, which included all steps. Table 2 shows that excluding 

data from the initial steps significantly enhances algorithm performance. This is evidenced by a reduction of over 10 % in the 
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𝐸𝑎𝑏𝑠, 𝐸𝑟𝑒𝑙, and 𝑅𝑀𝑆𝐸 metrics, indicating greater accuracy, and an increase of 0.5 % in the 𝑅2 value, reflecting improved 

quality and consistency. 

 

 

Figure 15 

Bland-Altman Analysis 

Table 2  

 Comparison of the performance of the proposed algorithm with the first steps and without the first steps 

  

Performance Metrics Including the First Steps Excluding the First Steps Improvement 

𝐸𝑎𝑏𝑠 0.0313 m 0.0271 m 13.53 % 

𝐸𝑟𝑒𝑙 0.0412 m 0.0337 m 18.14 % 

𝑅𝑀𝑆𝐸 2.82 % 2.45 % 12.9 % 

𝑅2 98.27 % 98.78 % 0.51 % 

 

4.- CONCLUSIONS 
This work proposed and validated a novel algorithm for stride length estimation. It is based on an analytical approach that 

leverages the specific characteristics of IMU signals when the wearable device is attached to the forefoot. The algorithm's 

implementation demonstrated its ability to provide accurate and reliable stride length estimates. According to the validation 

metrics, the proposed algorithm outperforms most results reported in prior studies. The final performance metrics were: 

𝐸𝑎𝑏𝑠 = 0.0313 m, 𝑅𝑀𝑆𝐸 = 0.0412 m, 𝐸𝑟𝑒𝑙 = 2.82 %, and 𝑅2 = 98.27 %. 

Taken together, the applied statistical tests and inference methods establish that the stride length estimation algorithm exhibits 

robust performance from a statistical perspective. The absence of bias, the high agreement with the reference method, the 

stability of the error across changes in stride magnitude, and the consistency of the metrics indicate that the algorithm is 

accurate, precise, and stable, even in the presence of non-Gaussian distributed errors. Thus, this algorithm represents a 

significant contribution to recent efforts aimed at improving stride length estimation. 

A key methodological aspect was the incremental increase of data used for validation. The gradual inclusion of data confirmed 

the sufficiency of the database and the robustness and reliability of the results. 
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It is worth mentioning that although the database was composed of IMU signals acquired under normal walking conditions, 

even though no restrictions were issued in this regard, the proposed method can be applied to any walking speed, provided 

that the stability time intervals corresponding to the foot stance phases are maintained. 

A major strength of the algorithm is its analytical foundation, which provides a solid and reliable basis for estimation. This 

can be advantageous for diverse applications such as physical activity monitoring, sports performance tracking, and 

rehabilitation. By requiring a single IMU, the algorithm offers a more practical and cost-effective solution compared to more 

expensive alternatives. This combination of accuracy and affordability makes the proposed algorithm a highly suitable option 

for applications requiring stride length estimation. 

Excluding the first step led to a significant performance improvement. This finding is relevant for applications that can omit 

the initial step without substantially degrading overall performance. 

APPENDIX A 

As explained in Section IV, a correction is applied to the gyroscope-derived angle measurements within the interval covering 

subphase 2 of the preceding stability phase, the swing phase, and the following stability phase (the total number of samples 

is denoted as 𝑁) to reduce the constant deviation affecting the gyroscope signal. This correction is based on the assumption 

that the average value of the rotation angles within the following stability phase, estimated from the gyroscope signals, should 

closely approximate the average value of the rotation angles within the same phase, as estimated from the accelerometer and 

magnetometer signals in the previous step. 

The correction consists of applying a linear adjustment equal to  
𝑛

𝑁
Δ, where 𝑛 is the sample index and Δ is a parameter chosen 

such that the mean of the gyroscope-estimated rotation angles within the following stability phase equals the mean of the 

corresponding angles estimated from the accelerometer and magnetometer signals. That is: 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑_𝑎𝑛𝑔𝑙𝑒(𝑛) = 𝑎𝑛𝑔𝑔(𝑛) −
𝑛

𝑁
∆ (A.1) 

The parameter Δ must ensure that the mean of the rotation angles within the following stability phase, estimated from the 

gyroscope signals, equals the mean of the corresponding angles estimated from the accelerometer and magnetometer signals. 

That is: 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑_𝑎𝑛𝑔𝑙𝑒𝑔 =
∑ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑_𝑎𝑛𝑔𝑙𝑒𝑔(𝑘)
𝑁
𝑘=𝑃+𝑀+1

𝐿
= 𝐹𝑖𝑛𝑎𝑙_𝐴𝑛𝑔𝑙𝑒 (A.2) 

where 𝑃 is the number of samples in subphase 2 of the preceding stability phase, 𝑀 is the number of samples in the swing 

phase, and 𝐿 is the number of samples in the following stability phase. 

Substituting Equation (A.1) into (A.2), 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑_𝑎𝑛𝑔𝑙𝑒
𝑔
=
∑ (𝑎𝑛𝑔𝑔(𝑘) −

𝑘

𝑁
∆)𝑁

𝑘=𝑃+𝑀+1 

𝐿
= 𝐹𝑖𝑛𝑎𝑙_𝐴𝑛𝑔𝑙𝑒 (A.3) 

Solving ∆ yields:  

∑ 𝑎𝑛𝑔𝑔(𝑘)

𝑁

𝑘=𝑃+𝑀+1

− ∑
𝑘

𝑁
∆

𝑁

𝑘=𝑃+𝑀+1

= 𝐿 ∙ 𝐹𝑖𝑛𝑎𝑙_𝐴𝑛𝑔𝑙𝑒 

∆ ∑
𝑘

𝑁

𝑁

𝑘=𝑃+𝑀+1

  = ∑ 𝑎𝑛𝑔𝑔(𝑘)

𝑁

𝑘=𝑃+𝑀+1

 −  𝐿 ∙ 𝐹𝑖𝑛𝑎𝑙_𝐴𝑛𝑔𝑙𝑒 

 

∆ =  
∑ 𝑎𝑛𝑔𝑔(𝑘)
𝑁
𝑘=𝑃+𝑀+1  −  𝐿 ∙ 𝐹𝑖𝑛𝑎𝑙_𝐴𝑛𝑔𝑙𝑒

∑
𝑘

𝑁
𝑁
𝑘=𝑃+𝑀+1 

 (A.4) 
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APPENDIX B 

Since the effect of drift on the rotation angle estimation is not completely eliminated, the velocity obtained by integrating the 

acceleration signals and the subsequent displacement derived from this velocity will not be optimal. Considering that during 

the preceding and following stability phase intervals, the movement measured by the IMU is nearly null, the next step is to 

perform a two-step adjustment on the rotated acceleration signals. 

The first adjustment is applied to the samples of the rotated acceleration signals (or later, to the velocity signals resulting from 

the integration of the adjusted accelerations) within the interval covering the swing phase and the following stability phase. 

The total number of samples in this interval is denoted as 𝑁𝑎1 . This adjustment consists of a linear correction to the signal 

values by a factor of 
𝑛

𝑁𝑎1

Δ𝑎1 , where 𝑛 is the sample index starting from the first sample of the swing phase (𝑛 = 1) and ending 

at the last sample of the following stability phase (𝑛 = 𝑁𝑎1). That is: 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑠𝑖𝑔𝑛𝑎𝑙(𝑛) =  𝑠𝑖𝑔𝑛𝑎𝑙(𝑛) − 
𝑛

𝑁𝑎1
Δ𝑎1  (B.1) 

The parameter Δ𝑎1is determined such a way that the average of the adjusted signal samples within the following stability 

phase equals zero. That is: 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑠𝑖𝑔𝑛𝑎𝑙 =
∑ 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑠𝑖𝑔𝑛𝑎𝑙(𝑘)
𝑁𝑎1
𝑘=𝑀+1

𝐿
= 0 (B.2) 

where 𝑀 is the number of samples in the swing phase, and 𝐿 is the number of samples in the following stability phase. 

If equation (B.1) is substituted into (B.2), 

𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝑠𝑖𝑔𝑛𝑎𝑙 =

∑ (𝑠𝑖𝑔𝑛𝑎𝑙(𝑘) −  
𝑘

𝑁𝑎1

Δ𝑎1)
𝑁𝑎1
𝑘=𝑀+1

𝐿
= 0 

(B.3) 

Solving Δ𝑎1 yields: 

∑ 𝑠𝑖𝑔𝑛𝑎𝑙(𝑘)

𝑁𝑎1

𝑘=𝑀+1

− ∑
𝑘

𝑁𝑎1
Δ𝑎1

𝑁𝑎1

𝑘=𝑀+1

= 0 

Δ𝑎1 ∑
𝑘

𝑁𝑎1

𝑁𝑎1

𝑘=𝑀+1

  = ∑ 𝑠𝑖𝑔𝑛𝑎𝑙(𝑘)

𝑁𝑎1

𝑘=𝑀+1

 

Δ𝑎1  =  
∑ 𝑠𝑖𝑔𝑛𝑎𝑙(𝑘)
𝑁𝑎1
𝑘=𝑀+1

∑
𝑘

𝑁𝑎1

𝑁𝑎1
𝑘=𝑀+1 

 (B.4) 
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