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ABSTRACT / RESUMEN

The use of Inertial Measurement Units (IMUs) has emerged as a promising technique for estimating stride length during
human gait. This research presents a new analytical approach to estimate this parameter. The estimation procedure is based
on the identification and use of stability intervals before and after the swing phase of the sensor-mounted foot. The algorithm
proposes attaching the inertial sensor to the forefoot. A database was built to validate the algorithm. The data were
incorporated into the analysis gradually to gain insight into the sufficiency of the data used. Several metrics were computed,
and the results revealed that the proposed algorithm exhibits a performance that outperforms the majority of the results
reported by other studies to date.

Keywords: human gait; inertial sensor; stride length estimation; stability intervals
RESUMEN

El uso de Unidades de Medicién Inercial (UMI) se ha convertido en una técnica prometedora para estimar la longitud de
la zancada durante la marcha humana. Esta investigacion presenta un nuevo enfoque analitico para estimar este
parametro. El procedimiento de estimacion se basa en la identificacién y el uso de intervalos de estabilidad antes y después
de la fase de balanceo del pie con sensor. El algoritmo propone la fijacién del sensor inercial al antepié. Se cre6 una base
de datos para validar el algoritmo. Los datos se incorporaron gradualmente al andlisis para comprender su suficiencia.
Se calcularon diversas métricas y los resultados revelaron que el algoritmo propuesto presenta un rendimiento superior al
de la mayoria de los resultados reportados en otros estudios hasta la fecha.

Palabras Claves: marcha humana; sensor inercial; estimacion de la longitud de la zancada; intervalos de estabilidad

Estimacion de la longitud de zancada mediante el uso de un Unico sensor inercial y la aplicacién de un método basado en
la deteccién de intervalos de estabilidad

1. -INTRODUCTION

The early evaluation of symptoms related to functional impairment allows for the early diagnosis of diseases and their possible
complications, thus helping to determine the most appropriate treatment for each type of pathology [1]. The early detection
of frailty in the elderly and the timely application of diagnostic, therapeutic, and rehabilitative techniques can positively impact
their quality of life [2]. Several research works have been carried out to study the importance of physical performance
indicators for classifying the functional capacity of elderly people. Among the most used parameters for evaluating physical
performance are those related to gait [3].

Numerous strategies for gait evaluation have been proposed, leading to the identification of qualitative and quantitative
criteria; however, quantitative evaluation strategies are the most developed, as they are objective, allow for a more complete
assessment, and avoid observational errors [4]. Usually, laboratories for the study of human gait obtain spatiotemporal
parameters simply through the use of measuring tapes, stopwatches, and systematic visual analysis performed by professionals

[5].
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Among human gait parameters, stride length is one of the most important because it is related to movement efficiency and
economy [6]. Furthermore, stride length can also be related to a person's posture and balance (e.g., an abnormal stride length
can disrupt body alignment and increase the risk of injury or muscle imbalances) [6].

In recent years, various systems and equipment have emerged to obtain objective data for quantitative and effective gait
evaluation through kinematics, dynamics, and other aspects such as the electrical activity of the muscles during movement
[5]. In this sense, when this highly specialized technology is used for the analysis of clinical gait conditions, it is referred to
as instrumented gait analysis. The most popular methods are those based on cameras, force platforms, or the use of portable
sensors placed on various parts of the body [2].

An Inertial Measurement Unit (IMU) is capable of measuring position, orientation, and velocity [7]. Since this type of sensor
does not require an external reference to obtain velocity and angular position, its fields of application are broad and diverse
[8]. Such a device can be placed directly on specific locations of the body to understand joint kinematics [9]. Compared with
other systems, the placement of these sensors does not require much time nor the involvement of experts in the process. IMUs
placed on the lower limbs allow for gait analysis that is not restricted to laboratory conditions [9]. Despite the aforementioned
advantages, the use of inertial sensors carries certain disadvantages, such as the inability to measure stride length directly
[10].

In [11], an IMU, comprising three orthogonally oriented accelerometers, three gyroscopes, and three magnetometers, was
attached to the participant's instep, and signal samples were acquired at 100 Hz. A position estimation algorithm was
implemented based on the accumulation of foot displacements along the horizontal orientation. To detect steps, the authors
applied two alternatives: one based on processing the angular velocity signals from the gyroscopes, and the other based on
processing the magnetic field signals from the magnetometers. The method exhibited a relative error of around 5%.

In [12], a study focused on extracting each individual stride length using an easy-to-use algorithm that required only one
inertial sensor attached to the subject's shank. The mean relative error was lower than 6% for the healthy group and 10.3% for
the Parkinson's disease group.

A deep learning-based step length estimation model, adaptable to different phone carrying positions and requiring neither
individual stature information nor constrained spatial conditions, was proposed in [13]. This method achieved a mean relative
error of 3.01%.

Wang and colleagues [14] combined smartphone mode recognition with stride length estimation to provide an accurate
walking distance estimation. They applied multiple classification models to recognize five smartphone modes (calling,
handheld, pocket, armband, swing). In addition to using a combination of time-domain and frequency-domain features from
the built-in accelerometers and gyroscopes during the stride interval, higher-order features were constructed based on
established studies to model stride length using a machine learning regression model. The mean absolute error and relative
error were 0.036 m and 3.04%, respectively.

In [15], a stride-length estimation method based on a long short-term memory network and denoising autoencoders was
presented. This method achieved a stride-length error rate of 4.59% and a mean absolute error of 0.058 m.

A single convolutional neural network model to predict the stride length of running and walking and to classify the running
or walking type per stride was proposed in [16]. The model trains its pretext task using self-supervised learning on a large
unlabeled dataset for feature learning, and its downstream task on the stride length estimation and classification tasks using
supervised learning with a small labeled dataset. The proposed model achieved a mean relative error and a mean absolute
error of 7.44% and 0.062 m, respectively, for stride length estimation.

In [17], a step length estimation model that utilizes acceleration magnitude was presented. The model was constructed by
applying principal component analysis to data collected from anatomical landmarks on the human body during walking, using
a highly accurate optical measurement system. The performance of the proposed model was evaluated for four typical
smartphone positions for long-term human walking, producing an overall mean absolute stride length estimation error of
0.064 m.

A study presented in [18] aimed to develop an improved foot trajectory and stride length estimation method for level-ground
running based on foot displacement. The accelerations and angular velocities of the left and right feet were measured with
two IMUs mounted on the dorsum of each foot. In this study, foot trajectories between two consecutive and ipsilateral
midstance instances were estimated using two methods: (1) a spatial error-correcting algorithm and (2) a velocity-based linear
dedrifting technique. For different running velocity categories, the best mean absolute error was 0.05 m.

A study addressing an artificial intelligence-empowered and cost-effective gait monitoring system was presented in [19]. A
pair of intelligent shoes with a single inertial sensor and a smartphone application were developed as a gait monitoring system

2



Fidel Hernandez, Melissa Dominguez, Brenda Guitard, René Corvo, Jon Altuna
RIELAC, Vol. 47 (Publicacion Continua):e2601 (2026) ISSN:1815-5928

to detect the user’s gait cycle, stand phase time, swing phase time, stride length, and foot clearance. This paper applied an
Extreme Learning Machine algorithm for stride length estimation. The Vicon motion capture system was used to verify the
accuracy of the gait metrics, and the results exhibited an RMSE of 0.0184 m.

Several machine-learning models to estimate step length based on data from a single lower-back inertial measurement unit
worn by subjects with different neurological conditions, including Parkinson’s disease and healthy controls, were developed
and presented in [20]. For a single step, the best model showed an RMSE of 0.0608 m.

In summary, the approaches implemented for stride length estimation are primarily based on analytical methods or the
application of machine learning techniques. Most analytical approaches usually require dealing with inherent problems, such
as the projection of the gravity acceleration vector on the three IMU axes and the gyroscope signal drift; together, these major
issues affect task performance. On the other hand, machine learning techniques can overcome these drawbacks; however, the
performance of the resulting models can be degraded when the method must process data not included in the validation
database [13].

This work proposes an analytical method for stride length estimation. This method leverages the stability intervals that occur
during the gait cycle for acceleration and velocity initialization and implements a new approach for rotation angle adjustment
to minimize the drift effect.

2.- MATERIALS AND METHODS
2.1.- PROPOSED ALGORITHM

Existing algorithms have exhibited significantly low effectiveness due to drift, vibration sensitivity, sensor limitations, and
inaccurate integration with other systems [10]. This work proposes a new algorithm to obtain more accurate and reliable
position estimates. Similar to the basic approach applied for stride length estimation, this algorithm is based on the analysis
of IMU signals within the interval corresponding to the swing phase of the foot carrying the sensor. Consequently, the first
step focuses on detecting the stability intervals that precede and follow the swing phase.

2.1.1.- DETERMINATION OF THE PRECEDING AND FOLLOWING
STABILITY PHASE INTERVALS

To determine the stability intervals preceding and following the swing phase of the foot carrying the sensor, the longitudinal
acceleration signal is proposed for use. This signal best represents the ascent and descent of the foot during the swing phase;
it was therefore assumed that it could reveal the stability intervals more clearly. The analysis then focuses on identifying the
extreme points—the points of starting stability (SSP) and ending stability (ESP)—which correspond to the preceding and
following stability intervals around each swing phase. Figure 1 shows an example of a longitudinal acceleration signal from
an IMU mounted on the forefoot during gait.
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Figure 1

Example of longitudinal acceleration signal (IMU mounted at the forefoot) during a gait. Points of starting stability and ending
stability, SSP and ESP.
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The ESPs are determined by computing the variance of a 0.4 s moving window (shifting from left to right). The ending points
of every set of consecutive windows with a variance below 0.8 m#/s* (a threshold selected after a detailed empirical study of
the database signals) are identified as the ESPs.

The SSPs are determined by computing the variance of a 0.2 s window that moves from each ESP to the left. The ending point
of a set of consecutive windows with a variance below 0.5 m#s* (similar to the ESP detection, this threshold was selected
after a detailed empirical study of the database signals) is identified as an SSP.

Having identified the stability intervals, the next step is to estimate the distance traveled by the foot in the anteroposterior
direction between these intervals; that is, the stride length.

2.1.2.- ESTIMATION OF THE ANTEROPOSTERIOR DISPLACEMENT OF
THE IMU-MOUNTED FOOT BETWEEN CONSECUTIVE STABILITY
INTERVALS

As previously mentioned, the interval between the stability intervals is used to estimate the distance traveled by the foot.
However, the proposed algorithm also uses the information within both the preceding and following stability intervals. These
intervals are used to perform adjustments to the estimated parameters, as will be explained later. In this algorithm, the
preceding stability interval is divided into two equal-length subphases: subphase 1 and subphase 2 of the preceding stability
interval (see Figure 2).
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Figure 2

Example of longitudinal acceleration signal (IMU mounted at the forefoot) during a gait. Points of starting stability and ending
stability, SSP and ESP.

A diagram of the proposed algorithm is shown in Figure 3. The procedure for estimating a single stride length using signals
from an IMU placed on the forefoot is carried out as follows:

1. Using the signals from the 3D accelerometer and the 3D magnetometer, the rotation angles within subphase 1 of the
preceding stability phase and the following stability phase intervals are determined. These angles represent the initial
and final orientation of the inertial sensor during a stride execution. They are commonly known as Euler angles: roll
(), pitch (0), and yaw (y), as shown in Figure 4. These angles constitute a set of three angular coordinates that define
the orientation of the system relative to a reference frame. This calculation involves the signals from the
accelerometers and magnetometers and is performed using the following equations:
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where Ay, Ay, and A, are the signals from the IMU's accelerometers, and By and By are the magnetic field

measurements on the Y and X axes, respectively.
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Figure 3

Diagram of the proposed algorithm.

Figure 4

Rotation angles representation.
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The IMU's rotation angles are determined using the 3D gyroscope signals within the interval comprising subphase 2
of the preceding stability phase, the swing phase, and the following stability phase.

To reduce the impact of drift, a correction is applied to the angle measurements within the interval covering subphase
2 of the preceding stability phase, the swing phase, and the following stability phase. This correction ensures that the
average value of the rotation angles within the following stability phase—estimated from the 3D gyroscope signals—
approximates those estimated using the 3D accelerometer and 3D magnetometer. The correction consists of applying
a linear variation to the angle values equal to %A, where nn is the sample number and 4 is a parameter chosen such

that the mean of the rotation angles within the following stability interval (estimated from the gyroscope signals)
equals the mean of the rotation angles estimated from the 3D accelerometer and the 3D magnetometer. The value of
A is calculated as follows (see Appendix A):

ZIIX=P+M+1 angg(k) — L - FinalAngleyeanvaiue
A= N k (4)
Zk=P+M+1 N
where ang, (k) is the value of sample k of the rotation angle obtained from the corresponding gyroscope signal;
FinalAngleycanvane 1S the mean of the rotation angles within the following stability interval, estimated from the
3D accelerometer and 3D magnetometer; P is the number of samples in subphase 2 of the preceding stability phase;
M is the number of samples in the swing phase; and L is the number of samples in the following stability phase.

By applying a rotation to the IMU's coordinate axes, the gravity vector components are removed from the 3D
accelerometer signals. For the rotation procedure in the interval covering subphase 2 of the preceding stability phase
and the swing phase, the rotation angles estimated by the 3D gyroscope in Step 2 are used. For the rotation procedure
in the interval corresponding to the following stability phase, the rotation angles estimated by the 3D accelerometer
and the 3D magnetometer in Step 1 are used. The following rotation matrices are applied [21]:

11 0 0
R, (¢p)=]0 cos¢ —sin (l)l (5)
|0 sing cos¢
[ cosd 0 sin@
R,(6) = 0 1 0 l (6)
l—sinf 0 cos#@
[cosyp —siny O @)
R,(¥) = |sinyy cosy Ol
0 0 1

Several Euler angle conventions exist to define rotation matrices, differing in the sequence of rotations around the
three coordinate axes. The selected convention is ZYX, commonly used in orientation and position estimation
applications, and is given by the following equation:

Ry = Rz(lp) ’ Ry(e) ’ Rx(¢) (8)
The resulting rotation matrix is multiplied by the vector formed by the X, Y, and Z components of the acceleration
signal obtained directly from the 3D accelerometer, yielding new, rotated acceleration components.

The double integration of the rotated acceleration signals would, in principle, result in the displacement signal.
However, since the effect of drift on the rotation angle estimation is not completely removed, the velocity estimated
by integrating the acceleration signals, and the subsequent displacement estimated from this velocity, will not be
optimal. Therefore, a two-step adjustment is proposed: first on the rotated acceleration signals, and then on the
velocity signals resulting from integrating the adjusted accelerations.

a. For the interval covering both the swing phase and the following stability phase, a forward linear adjustment
equal to . A, is applied to the samples of the signal being adjusted, where n is the sample index and N, is

Ng,

the total number of samples in the interval. A schematic showing the arrangement of the samples and their
corresponding indices is presented in Figure 5 (this figure uses a fictitious signal for illustrative purposes).
This first adjustment ensures that the average of the samples within the following stability phase—which
will be processed by the subsequent integration—is equal to zero. This zero-average condition is based on
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the assumption that, within a stability interval, the values for both acceleration and velocity should be zero.
The parameter A, is determined as follows (see Appendix B):

Naw g gnalToInt k)

_ k=M+1
B, = -~ (©)

Zk M+1 N

where SignalTolnt(k) is the value of sample k of the signal (acceleration or velocity) to be adjusted, and
M is the number of samples within the swing phase.
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Figure 5

Example of sample numbering for the forward adjustment applied.

b. For the interval covering both subphase 2 of the preceding stability phase and the swing phase, a backward

4,, is applied to the samples of the signal that were previously adjusted in

linear adjustment equal to Nn
az
the forward manner. Here, n is the sample index and N, is the total number of samples in this interval.
This second adjustment ensures that the average of the samples within subphase 2 of the preceding stability
phase—which will be processed by the subsequent integration—is equal to zero. This condition is based on
the assumption that, within a stability interval, the values for both acceleration and velocity should be zero.

In this backward adjustment, the samples are processed in reverse order. The sample with index n =1
corresponds to the last sample of the swing phase, and the sample with index n = N,, corresponds to the

first sample of subphase 2 (see Figure 6). The parameter 4,,,, determined using the same principles as 4,

is calculated as follows:
Na2

A = Zk M+1 Adjsignal(k)
a — ZNU_Z (10)
k=M+1 N
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Figure 6
Example of sample numbering for the backward adjustment applied.

5. After applying this two-step adjustment to the rotated acceleration signals, a first integration is performed on the
resulting signals over the interval covering subphase 2 of the preceding stability phase, the swing phase, and the
following stability phase. The result is the velocity signal. Next, a second two-step adjustment is applied to the
velocity signal, followed by its integration over the same interval. The final outcome is the displacement signal.

2.2.- EXPERIMENT AND VALIDATION

The validation of the algorithm proposed in Section IV is presented in this section. A database comprising IMU signals
collected during experimental trials was constructed for this purpose. In the experimental setup, participants walked along a
runway featuring equidistant guidelines spaced at 0.01 m intervals (see Figure 7). A single IMU was placed on the forefoot
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(see Figure 8). Three video cameras were positioned along and beside the runway to obtain reference stride length
measurements.

Figure 7

Walking across the runway.

‘

Figure 8
IMU placement location.

The IMU-based wearable device used in this research was developed by the Signal Processing Applications Group (GAPS)
at Cujae University and the Cuban Center for Neuroscience. The device incorporated an InvenSense MPU-92/65 sensor and
was designed to transmit digitized IMU signals to a computer via Bluetooth. The MPU-92/65 is a 9-axis mation and orientation
sensor that combines an accelerometer, gyroscope, and magnetometer on a single chip, providing measurements along all
three axes (X, Y, Z). A sampling frequency of 1 kHz was used during the tests.

Accelerometer, gyroscope, and magnetometer signals were recorded while each subject walked a 5-meter path along the
runway. The 30 subjects involved in the measurements—healthy men and women aged between 18 and 35 years—provided
informed consent prior to their participation. The study was conducted in accordance with the Declaration of Helsinki, and
the protocol was approved by the Scientific Committee of the Faculty of Telecommunications and Electronics.

In this work, the stride length estimation algorithm was validated using the constructed dataset. The following performance
metrics were employed:

e the mean absolute error,

N
| x; — %l
Eans= ) (12)
=1
e the mean relative error,
1% — 2
X; — X;
Erer = NZ# 12)
i=1
e the RMSE value,
N %2
RMSE = w (13)
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o the coefficient of determination,
2 — 1 _ Z?]:l(xl‘ - fI:)Z (14)
ZL(% -7’
i=1 14
where x; is the reference stride length, ; is the estimated stride length, N is the number of stride realizations, and % is the
average of the N predicted values.

Despite being less conventional, the coefficient of determination R? was employed because it allows for a global assessment
of the quality and consistency of the estimation algorithm. This index represents the percentage of variability observed in the
measured values that is captured by the estimation algorithm. An R? value close to 100 % means that the estimated stride
length values closely follow the behavior of the measured real values.

To assess the consistency of the results, E;, E,.;, RMSE and R? were computed by gradually including data in the analysis,
one stride at a time. This approach allows for observing the stabilization of the metrics' trends, indicating when the amount of
analyzed data can be considered sufficient and the results deemed reliable. No more than 100 stride realizations were needed
to achieve this stabilization.

Because the Shapiro-Wilk test [22] indicated that the algorithm's measurement errors were not normally distributed, non-
parametric tests were employed to evaluate its performance. The following statistical tests and inference methods were used:

e  Wilcoxon Signed-Rank Test [23]: Applied to detect whether the algorithm showed a consistent tendency to
overestimate or underestimate stride length. This test evaluates whether the median of the differences between the
true and estimated measurements differs significantly from zero (H,: Median = 0), considering both the sign and
relative magnitude of the errors.

e Intraclass Correlation Coefficient (ICC) [24]: Applied to assess the agreement between the algorithm and the
reference method, specifically using the 3,1 model. This index measures the degree of absolute agreement between
two measurement methods, taking into account both between-subjects variability and error variability (Hq: ICC =
0).

o Bland-Altman Analysis [24]: Applied to characterize the overall behavior of the error, including its magnitude and
dispersion. This analysis uses the median as the bias estimator and percentiles as limits of agreement.

e Bootstrap Confidence Intervals [25]: Applied to estimate 95% confidence intervals for the E,. and RMSE metrics
using a Bootstrap resampling procedure. This method allows for assessing the stability of the metrics against sample
variations without assuming any specific distribution for the error.

3.- RESULTS AND DISCUSSION

Two examples of the results from applying the procedure to determine the preceding and following stability phase intervals
are shown in Figure 9. This figure shows the detected SSPs and ESPs with vertical magenta and green lines, respectively. It
can be observed that an SSP-ESP pair is detected on both sides of each swing phase of the foot carrying the IMU. Both signals
correspond to the Z-axis acceleration of the inertial sensor attached to the forefoot. Figures 9a and 9b show acceleration
signals acquired from subjects who took 5 and 3 steps, respectively, with the instrumented foot. In both cases, a preceding
and a following stability interval were successfully detected for each individual step.

Figure 10 presents the results of applying the displacement estimation algorithm to the steps shown in Figure 9. Figures 10a
and 10b depict the estimated displacement signals corresponding to the sequences of 5 and 3 steps, respectively.
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Figure 9

Samples of the results achieved from the application of the procedure for determination of the preceding and following stability
phase intervals (SSPs and ESPs detection): (a) 5 and (b) 3 steps with the IMU-mounted foot (Z-axis accelerations of the inertial
sensor attached to the forefoot of the foot).
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Figure 10

Samples of displacement signals estimated by the algorithm. a) Displacement signals corresponding to 5 steps. b) Displacement
signals corresponding to 3 steps.

The total displacement signal, representing the total traveled distance, can be reconstructed by concatenating the individual
displacement signals estimated between stability intervals. Figure 11 shows (blue line) the total displacement signals
synthesized from the individual step displacements shown in Figure 10. Figures 11a and 11b show the total displacement
signals corresponding to the sequences of 5 and 3 steps, respectively. In Figure 11, the red line represents the reference (true)
value of the traveled distance.
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Figure 11

Total displacement signals synthetized from the displacement signal corresponding to the single steps shown in Figure 10. a) Total
displacement signal corresponding to 5 steps. b) Total displacement signal corresponding to 3 steps.

The proposed algorithm was validated using the IMU signals database and the metrics, statistical test and inference methods
defined in Section V. As previously explained, the algorithm was applied to a data subset that was gradually increased to
ensure the reliability of the outcomes. The trends of E,,, and RMSE are shown in Figure 12, and the trends of E,,, and R* are
shown in Figure 13. These figures demonstrate that the metrics stabilize for data from 80 realizations onward. Therefore, the
amount of processed data can be considered sufficient to deem the results reliable. The final values obtained were:
Egps = 0.031m, RMSE = 0.0412m, E,.; = 2.82 %, and R? = 98.28 %.
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Figure 12

Trends of the series of E,p,s and RMSE values.
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Trends of the series of E,,; and R? values.

To provide a qualitative comparison between the true stride lengths and the corresponding estimates from the algorithm, these
values are presented in Figure 14. In this figure, the two sets of values—true stride lengths (blue) and estimated stride lengths
(red)—are plotted after sorting the true values in increasing order. This graphical representation offers a qualitative assessment
of the algorithm's effectiveness, showing that the estimated values closely match the true ones, thus demonstrating the
algorithm's high accuracy.
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Figure 14
True and estimated stride lengths.

The results obtained from the proposed algorithm were compared with those from other research works, as presented in Table
1. The table shows that the proposed algorithm outperforms the majority of the results reported in previous studies. The RMSE
from the method presented in [19] is the only metric that performed slightly better than the value achieved in this work. In
[19], a high-performance, artificial intelligence-empowered gait monitoring system was developed. However, it is important
to note that while Al-based approaches offer versatility, their performance can degrade when analyzing subjects whose
walking characteristics differ significantly from those represented in the training dataset [13].
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Comparison of the performance achieved by the prop-)l;)astélcfilgorithm with those achieved by previously developed
algorithms

Algorithm Mean ab(srtr)]l)ute error | Mean re(léjgve error RMSE (m) R (%)
Jimenez, 2009 [11] - 5 - -
Sijobert, 2015 [12] - 6 - -
Gu, 2019 [13] - 3.01 - -
Wang, 2019 [14] 0.036 3.04 - -
Wang, 2020 [15] 0.058 4.59 - -
Sui, 2021 [16] 0.062 7.44 - -
Vezocnik, 2021 [17] 0.064 - - -
Suzuki, 2022 [18] 0.050 - - -

Zhou, 2024 [19] - - 0.0184 96.17
Zadka, 2024 [20] - - 0.0608 -

Proposed algorithm 0.031 2.82 0.0412 98.28

As previously mentioned, several statistical tests and inference methods were applied. The Wilcoxon Signed-Rank Test
yielded a probability value of p = 0.3965, indicating insufficient evidence to reject the null hypothesis that the median of the
differences is zero. Therefore, the estimated values are close to the true values without a directional trend. This points to an
absence of systematic bias in the algorithm, demonstrating the method's accuracy. Furthermore, the obtained ICC was 0.9913.
As this value significantly exceeds the common threshold of 0.90, there is sufficient evidence to reject the null hypothesis that
the ICC = 0. According to established reliability criteria, values above 0.90 represent excellent agreement. This demonstrates
a nearly perfect agreement between the estimated and actual measurements, evidencing the algorithm's high precision and
stability in estimating stride length. This result suggests the possibility of replacing the true values with those estimated by
the algorithm.

The Bland-Altman analysis identified a median difference of 0.0015 m, which aligns with the Wilcoxon test result, and a
variability range marked by agreement limits of —0.1098 m (lower) and 0.0625 m (upper), as shown in Figure 15. This
analysis reveals no systematic bias—confirming the algorithm's accuracy in agreement with the Wilcoxon test—but it does
show notable dispersion and moderate variability in the extreme differences. This dispersion is consistent with the high
precision and stability of the estimates indicated by the obtained ICC. Finally, the 95 % Bootstrap confidence intervals for the

E ., and RMSE metrics were [0.0262 m, 0.0369 m] and [0.034 m, 0.0483 m], respectively. Given that these intervals are
narrow and that the calculated point metrics fall within their bounds, it can be concluded that these metrics are robust and
reproducible.

3.1.- A DEEPER ANALYSIS OF THE RESULTS

In this work, a more detailed analysis was performed on the resulting estimations, particularly those that showed significant
deviation from the corresponding true stride length values. The study determined that in most cases, the poorest results
corresponded to the stride length estimation of the first step. The authors consider that this is related to the movement dynamics
of a subject transitioning from a static position to motion. Presumably, this initial action establishes dynamics with particular
characteristics compared to the subsequent steps taken once the subject is already in motion. The most critical evidence of
this phenomenon was the non-negligible level of instability observed in the intervals preceding and following the swing phase
for a considerable number of first steps. Consequently, the authors decided to exclude the first step from the algorithm's
performance analysis. Following this procedure, the metrics were recalculated excluding the data from the first steps. The
resulting values were: E,,s = 0.0271 m, RMSE = 0.0337 m, E,.; = 2.45 %, and R? = 98.78 %.

The new results were compared with the original baseline, Table 2, which included all steps. Table 2 shows that excluding
data from the initial steps significantly enhances algorithm performance. This is evidenced by a reduction of over 10 % in the
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E.us» Erer, and RMSE metrics, indicating greater accuracy, and an increase of 0.5 % in the R? value, reflecting improved
quality and consistency.
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Bland-Altman Analysis

Table 2
Comparison of the performance of the proposed algorithm with the first steps and without the first steps

Performance Metrics Including the First Steps Excluding the First Steps Improvement
Eqps 0.0313 m 0.0271 m 13.53 %
Erer 0.0412 m 0.0337 m 18.14 %
RMSE 2.82% 2.45 % 12.9%
R? 98.27 % 98.78 % 0.51%

4.- CONCLUSIONS

This work proposed and validated a novel algorithm for stride length estimation. It is based on an analytical approach that
leverages the specific characteristics of IMU signals when the wearable device is attached to the forefoot. The algorithm's
implementation demonstrated its ability to provide accurate and reliable stride length estimates. According to the validation
metrics, the proposed algorithm outperforms most results reported in prior studies. The final performance metrics were:
E,s = 0.0313 m, RMSE = 0.0412m, E,,; = 2.82 %, and R? = 98.27 %.

Taken together, the applied statistical tests and inference methods establish that the stride length estimation algorithm exhibits
robust performance from a statistical perspective. The absence of bias, the high agreement with the reference method, the
stability of the error across changes in stride magnitude, and the consistency of the metrics indicate that the algorithm is
accurate, precise, and stable, even in the presence of non-Gaussian distributed errors. Thus, this algorithm represents a
significant contribution to recent efforts aimed at improving stride length estimation.

A key methodological aspect was the incremental increase of data used for validation. The gradual inclusion of data confirmed
the sufficiency of the database and the robustness and reliability of the results.
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It is worth mentioning that although the database was composed of IMU signals acquired under normal walking conditions,
even though no restrictions were issued in this regard, the proposed method can be applied to any walking speed, provided
that the stability time intervals corresponding to the foot stance phases are maintained.

A major strength of the algorithm is its analytical foundation, which provides a solid and reliable basis for estimation. This
can be advantageous for diverse applications such as physical activity monitoring, sports performance tracking, and
rehabilitation. By requiring a single IMU, the algorithm offers a more practical and cost-effective solution compared to more
expensive alternatives. This combination of accuracy and affordability makes the proposed algorithm a highly suitable option
for applications requiring stride length estimation.

Excluding the first step led to a significant performance improvement. This finding is relevant for applications that can omit
the initial step without substantially degrading overall performance.

APPENDIX A

As explained in Section 1V, a correction is applied to the gyroscope-derived angle measurements within the interval covering
subphase 2 of the preceding stability phase, the swing phase, and the following stability phase (the total number of samples
is denoted as N) to reduce the constant deviation affecting the gyroscope signal. This correction is based on the assumption
that the average value of the rotation angles within the following stability phase, estimated from the gyroscope signals, should
closely approximate the average value of the rotation angles within the same phase, as estimated from the accelerometer and
magnetometer signals in the previous step.

The correction consists of applying a linear adjustment equal to %A, where n is the sample index and A is a parameter chosen

such that the mean of the gyroscope-estimated rotation angles within the following stability phase equals the mean of the
corresponding angles estimated from the accelerometer and magnetometer signals. That is:

n

corrected_angle(n) = angy(n) — NA (A1)

The parameter A must ensure that the mean of the rotation angles within the following stability phase, estimated from the

gyroscope signals, equals the mean of the corresponding angles estimated from the accelerometer and magnetometer signals.

That is:

Yk=pims1 cOrrected_angle, (k)
L

where P is the number of samples in subphase 2 of the preceding stability phase, M is the number of samples in the swing

phase, and L is the number of samples in the following stability phase.

Substituting Equation (A.1) into (A.2),

= Final_Angle (A2)

corrected_an gleg =

k
ZIAY:P+M+1 (angg(k) - ;A)

corrected_angleg = i = Final_Angle (A-3)
Solving A yields:
N N
angq (k) — Z NA = L - Final_Angle
k=P+M+1 k=P+M+1
N I N
A Z N = Z angq(k) — L-Final_Angle
k=P+M+1 k=P+M+1

A= Sh=pimi1 angy(k) — L Final_Angle A

o u
k=P+M+1
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APPENDIX B

Since the effect of drift on the rotation angle estimation is not completely eliminated, the velocity obtained by integrating the
acceleration signals and the subsequent displacement derived from this velocity will not be optimal. Considering that during
the preceding and following stability phase intervals, the movement measured by the IMU is nearly null, the next step is to
perform a two-step adjustment on the rotated acceleration signals.

The first adjustment is applied to the samples of the rotated acceleration signals (or later, to the velocity signals resulting from
the integration of the adjusted accelerations) within the interval covering the swing phase and the following stability phase.
The total number of samples in this interval is denoted as N, . This adjustment consists of a linear correction to the signal

values by a factor of NL A, , where n is the sample index starting from the first sample of the swing phase (n = 1) and ending
al

at the last sample of the following stability phase (n = N, ). That is:

adjusted_signal(n) = signal(n) — NLAGL1 (B.1)
a;

The parameter A, is determined such a way that the average of the adjusted signal samples within the following stability
phase equals zero. That is:

Na,
k=M+1

ad]usfed_stgnal(k) —o (B.2)
where M is the number of samples in the swing phase, and L is the number of samples in the following stability phase.

If equation (B.1) is substituted into (B.2),

adjusted_signal =

N, ) k
ZkE\le (stgnal(k) -3 Aal)

(B.3)

adjusted_signal = L = =0
Solving 4, yields:
Na, Ng, y
Z signal(k)— Z N Aal =0
K=M+1 k=M+1" %
Ng, Ngy
k
Aa1 _— = Z signal(k)
k=M+1 X k=M+1
N,
A = kZ}VI+1 signal(k)
a — Na'1 k (B.4)

Zk=M+1 N_al
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