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Optimal Predefined-Time Stabilization 

for a Class of Linear Systems 

Esteban Jiménez-Rodríguez, Juan Diego Sánchez-Torres, Alexander G. Loukianov 

ABSTRACT/RESUMEN 

This paper addresses the problem of optimal predefined-time stability. Predefined-time stable systems are a class of fixed-

time stable dynamical systems for which a bound of the settling-time function can be defined a priori as an explicit 

parameter of the system. Sufficient conditions for a controller to solve the optimal predefined-time stabilization problem for 

a given nonlinear system are provided. Furthermore, for nonlinear affine systems and a specific performance index, a family 

of inverse optimal predefined-time stabilizing controllers is derived. This class of controllers is applied to the inverse 

predefined-time optimization of the sliding manifold reaching phase in linear systems, jointly with the idea of integral 

sliding mode control to ensure robustness. Finally, as a study case, the developed methods are applied to an uncertain 

satellite system, and numerical simulations are carried out to show their behavior. 
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Este trabajo trata el problema de estabilidad óptima en tiempo predefinido. Los sistemas estables en tiempo predefinido 

son una clase de sistemas  que presentan la propiedad  de estabilidad en tiempo fijo y, además, una cota de la función de 

tiempo de convergencia puede ser definida a priori como un parámetro explícito del sistema. En el trabajo se 

proporcionan condiciones suficientes para que el problema de estabilización optima en tiempo predefinido sea soluble 

dado un sistema no lineal. Además, para sistemas no lineales afines al control y un índice de desempeño específico, se 

deriva una familia de controladores estabilizantes en tiempo predefinido. Esta clase de controladores se aplica a la 

optimización inversa en triempo predefinido de la fase de alcance de variedades deslizantes en sistemas lineales, junto 

con la idea de modos deslizantes integrales para brindar robustez. Finalmente, como caso de estudio, los métodos 

desarrollados se aplican a un sistema de satélite con incertidumnre, y se llevan a cabo simulaciones numéricas para 

validar su comportamiento. 

Palabras Claves: Ecuación de Hamilton-Jacobi-Bellman, Funciones de Lyapunov, Control Óptimo, Estabilidad de 

tiempo predefinido 

Estabilización de tiempo predefinido óptima para una clase de sistemas lineales 

1.- INTRODUCTION 

Finite-time stable dynamical systems provide solutions to applications which require hard time response constraints. 

Important works involving the definition and application of finite-time stability have been carried out in [1-5] Nevertheless, 

this finite stabilization time is often an unbounded function of the initial conditions of the system. Making this function 

bounded to ensure the settling time is less than a certain quantity for any initial condition may be convenient, for instance, 

for optimization and state estimation tasks. With this purpose, a stronger form of stability, in which the convergence time 

presents a class of uniformity with respect to the initial conditions, called fixed-time stability was introduced [6-9]. When 

fixed-time stable dynamical systems are applied to control or observation, it may be difficult to find a direct relationship 

between the gains of the system and the upper bound of the convergence time; thus, tuning the system in order to achieve a 

desired maximum stabilization time is not a trivial task. 

In this sense, another class of dynamical systems which exhibit the property of predefined-time stability, have been studied 

[10,11]. For these systems, an upper bound of the convergence time appears explicitly in their dynamical equations; in 

particular, it equals the reciprocal of the system gain. Moreover, for unperturbed systems, this bound is not a conservative 

estimation but truly the minimum value that is greater than all the possible exact settling times.  
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On the other hand, the infinite-horizon, nonlinear non-quadratic optimal asymptotic stabilization problem was addressed in 

[12]. The main idea of the results are based on the condition that a Lyapunov function for the nonlinear system is at the 

same time the solution of the steady-state Hamilton-Jacobi-Bellman equation, guaranteeing both asymptotic stability and 

optimality. Nevertheless, returning to the first paragraph idea, the finite-time stability is a desired property in some 

applications, but optimal finite-time controllers obtained using the maximum principle do not generally yield feedback 

controllers. In this sense, the optimal finite-time stabilization is studied in [13], as an extension of [12]. Since the results are 

based on the framework developed in [12], the controllers obtained are feedback controllers. 

Consequently, as an extension of the ideas presented in [11-14], this paper addresses the problem of optimal predefined-time 

stabilization, namely the problem of finding a state-feedback control that minimizes certain performance measure, 

guaranteeing at the same time predefined-time stability of the closed-loop system. In particular, sufficient conditions for a 

controller to solve the optimal predefined-time stabilization problem for a given system are provided. These conditions 

involve a Lyapunov function that satisfy both a certain differential inequality for guaranteeing predefined-time stability and 

the steady-state Hamilton-Jacobi-Bellman equation for ensuring optimality. Furthermore, this result is applied to the 

predefined-time optimization of the sliding manifold reaching phase in linear systems, jointly with the integral sliding mode 

control idea to provide robustness. Finally, as a study case, the predefined-time optimization of the sliding manifold 

reaching phase in an uncertain satellite system is performed using the developed methods, and numerical simulations are 

carried out to show their behavior. 

 

2.- MATHEMATICAL PRELIMINARES: PREDEFINED-TIME STABILITY 

Consider the system 

  ̇( )   ( ( )  )  ( )      (1) 

where      is the system state,      stands for the system parameters and         is a function such that  ( )  
 , i.e. the origin     is an equilibrium point of (1). 

Definition 1.1. [8] The origin of (1) is globally finite-time stable if it is globally asymptotically stable and any solution 

 (    ) of (1) reaches the equilibrium point at some finite time moment, i.e., 

    (  )  (    )   , where         * +. 

Remark 1.1. The settling-time function  (  ) for systems with a finite-time stable equilibrium point is usually an 

unbounded function of the system initial condition. 

Definition 1.2. [8] The origin of the system (1) is fixed-time stable if it is globally finite-time stable and the settling-time 

function is bounded, i.e.               
   (  )       . 

Remark 1.3. Note that there are several choices for     . For instance, if the settling-time function is bounded by   , it is 

also bounded by     for all    . This motivates the following definition. 

Definition 1.3. [11] Assume that the origin of the system (1) is fixed-time stable. Let   be the set of all the bounds of the 

settling-time function for the system (1), i.e., 

   *            
   (  )       +  (2) 

Then, the minimum bound of the settling-time function   , is defined as 

            
    

 
 (  )   (3) 

Remark 1.2. The time    in the above definition can be considered as the true fixed-time in which the system (1) is 

stabilized. 

Definition 1.4. [11] For the case of fixed-time stability when the system (1) parameters   can be expressed in terms of       
or    (a bound or the least upper bound of the settling-time function), it is said that the origin of the system (1) is 

predefined-time stable. 

With the above definition, the following lemma provides a Lyapunov-like condition for predefined-time stability of the 

origin: 

Lemma 1.1. [10] Assume there exist a continuous radially unbounded function         * +, and real numbers      

and      , such that the system (1) parameters   can be expressed as a function of     , and 

  ( )    (4) 
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  ( )          (5) 

and the time derivative of   along the trajectories of the system (1) satisfies the differential inequality 

 
 ̇   

 

   
   (  )       (6) 

Then, the origin of the system (1) is predefined-time stable with  (  )    . 

Remark 1.3. Lemma 1.1 characterizes fixed-time stability in a very practical way since the condition (6) directly involves a 

bound on the convergence time. However, this condition is not sufficient for    to be the least upper bound of the settling-

time function  (  ). A sufficient condition is provided in the following corollary of Lemma 1.1. 

Corollary 1.1. Under the same conditions of Lemma 1.1, if the time derivative of   along the trajectories of the system (1) 

satisfies differential equation 

 
 ̇   

 

   
   (  )       (7) 

then, the origin of the system (1) is predefined-time stable with          (  )    . 

Remark 1.4. Note that the equality condition (7) is more restrictive than the inequality (6), in the sense that to obtain the 

equality in (7) no uncertainty in the system model is allowed. 

Definition 1.5. [11] For     ,       and     , the predefined-time stabilizing function is defined as 

 
  (    )  

 

   
   (‖ ‖ )

 

‖ ‖ 
  (8) 

Remark 1.5. The function   (    ) is continuous and non-Lipschitz for      , and discontinuous for    . 

The following two lemmas give meaning to the name “predefined-time stabilizing function”. 

Lemma 1.2. [11] For every initial condition   , the origin of the system 

  ̇( )     ( ( )   )  ( )      (9) 

with     , and       is predefined-time stable with          (  )    . 

The previous results have been applied to design a robust predefined-time controller for the perturbed system 

  ̇( )   (   )   ( )  ( )      (10) 

with        and       
    .  The objective is to drive the system (10) state to the point     in a predefined 

time, in spite of the unknown perturbation  (   ). 

Lemma 1.3. [11] Let the function  (   ) be considered as an unknown non-vanishing perturbation bounded by | (   )|  
 , with      . Then, selecting the control input as 

     
 

‖ ‖
    (    ) (11) 

with     ,       and    , ensures  the  closed-loop system  (10)-(11) origin is predefined-time stable with 

 (  )    . 

 

2.1.- MATHEMATICAL PRELIMINARES: OPTIMAL CONTROL THEORY 

Consider the controlled nonlinear system 

  ̇( )   ( ( )  ( ))  ( )      (12) 

where      is the system state,      is the system control input, which is restricted to belong to a certain set      

of the admissible controls, and            is a nonlinear function with  (   )   . 

The control objective is to design a control law for the system (12) such that the following performance measure 

 (    ( ))  ∫  ( ( )  ( ))  
  
 

 is minimized. Here,           is a continuous function, assumed to be convex in 

 . 
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Define the minimum cost function   ( ( )  ) as 

   ( ( )  )     
   

,∫  ( ( )  ( ))  
  

 

-  (13) 

Then, defining the Hamiltonian, for      (usually called the costate),  (     )   (   )     (   ), the Hamilton-

Jacobi-Bellman (HJB) equation can be written as 

      
   

, (    
   (   )

  

 

)-   
   (   )

  
  (14) 

that provides a sufficient condition for optimality. 

For infinite-horizon problems (limit as     ), the cost does not depend on   anymore and the partial differential equation 

(14) reduces to the steady-state HJB equation 

      
   

, (    
   ( )

  

 

)- (15) 

which will be used in foregoing. 

 

3.- OPTIMAL PREDEFINED-TIME STABILIZATION 

Definition 3.1. Consider the optimal control problem for the system (12) 

    
   (  )

 (    ( ))  ∫  ( ( )  ( ))  
 

 

 (16) 

where  (  )  * ( )  ( )            (  )                        +  This problem is called as the optimal predefined-time 

stabilization problem for the system (12). 

The following theorem gives sufficient conditions for a controller to solve this problem. 

Theorem 3.1. Assume there exist a    radially unbounded function         * +, real numbers      and     
  , and a control law          such that 

  ( )                                                         (17) 

  ( )                                       (18) 

   ( )                                                        (19) 

   

  
 (    ( ))   

 

   
   (  )     (20) 

 
 (    ( ) 

  

  

 

)                                (21) 

 
 (    

  

  

 

)         (  )     (22) 

Then, with the feedback control 

 
  ( )    ( ( ))        

   (  )
 (    

  

  

 

)   (23) 

the origin     of the closed-loop system 

  ̇( )   . ( )   ( ( ))/   (24) 

is predefined-time stable with  (  )    . Moreover, the feedback control law (23) minimizes  (    ( )) (18) in the sense 

that 

  .    
 ( ( ))/     

   (  )
 (    ( )) 

           (  )  
(25) 
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Proof. Applying Lemma 1.1 to the closed-loop system (24), predefined-time stability with predefined time    follows 

directly from the conditions (17)-(20). 

To prove (25), let  ( ) be a solution of the system (24). Then, 

  ̇( ( ))  
  

  
 . ( )   ( ( ))/   

From the above and (21) it follows 

  . ( )   ( ( ))/   . ( )   ( ( ))/  
  

  
 . ( )   ( ( ))/   ̇( ( ))  

 
                            ( ( )   ( ( )) 

  

  

 

)   ̇( ( ))    ̇( ( ))  
 

Hence, 

  .    
 ( ( ))/  ∫   ̇( ( ))  

 

 

  

                                                                    
   

 ( ( ))   (  )   (  )  

Now, let  ( )   (  ) and let  ( ) be the solution of (12), so that 

  ̇( ( ))  
  

  
 ( ( )  ( ))   

Then, 

  ( ( )  ( ))   ( ( )  ( ))  
  

  
 ( ( )  ( ))   ̇( ( ))  

 
    ( ( )  ( ) 

  

  

 

)   ̇( ( )) 
 

Since  ( ) stabilizes (12) in predefined time   , using (21) and (22) we have 

  (    ( ))  ∫ * ( ( )  ( ) 
  

  

 

)   ̇( ( ))+   
 

 

  

 
                                                   

   
 ( ( ))   (  )  ∫  ( ( )  ( ) 

  

  

 

)  
 

 

 
 

   (  )   .    
 ( ( ))/         

 

Remark 3.1. It is important that the optimal predefined-time stabilizing controller      ( ) characterized by Theorem 3.1 

is a feedback controller. 

Remark 3.2. Note that the conditions (17)-(22) involve a    predefined-time Lyapunov function (see Lemma 1.1) that is 

also a solution of the steady state Hamilton-Jacobi-Bellman equation (15). As usual in optimal control theory, these 

existence conditions are quite restrictive. However, these conditions are very useful to obtain an inverse optimal predefined-

time stabilizing controller, for instance, for a class nonlinear affine control systems with relative degree one.  This is a 

typical case in sliding mode control design, and it will be considered in foregoing. 

To derive a closed-form expression for the controller, the result of Theorem 3.1 is specialized to nonlinear affine control 

systems of the form  

  ̇( )   ( ( ))   ( ( )) ( )  ( )      (26) 

where      is the system state,      is the system control input,         is a nonlinear function with  ( )    

and          .  

The performance integrand is also specialized to 

  (   )    ( )    ( )   
   ( )  (27) 

where     
   ,     

       and     
       is a positive definite matrix function. 
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Theorem 3.2. Assume there exist a     radially unbounded function         * +, and real numbers      and 

       such that 

  ( )    (28) 

  ( )          (29) 

 
  

  
[ ( )   ( ) * 

 

 
  
  ( ) [  ( )  

  

  
 ( )]

 

+]   
 

   
   (  )     (30) 

   ( )    (31) 

 
  ( )  

  

  
 ( )  

 

 
[  ( )  

  

  
 ( )]   

  ( ) [  ( )  
  

  
 ( )]

 

    (32) 

Then, with the feedback control 

 
      ( )   

 

 
  
  ( ) [  ( )  

  

  
 ( )]

 

  (33) 

the origin of the closed loop system  

  ̇( )   ( ( ))   ( ( ))  ( ( ))  (34) 

is predefined-time stable with  (  )    . Moreover, the performance measure  (    ( )) is minimized in the sense of (25) 

and 

  .    
 ( ( ))/   (  )  (35) 

Proof. Under these conditions the hypotheses of Theorem 3.1 are satisfied. In fact, the control law (33) is obtained solving 
 

  
0 .    

  

  
/1    with  (   ) specialized to (27). Then, setting      ( ) as in (33), the conditions (28), (29) and 

(30) become the hypotheses (17), (18) and (20), respectively. 

On the other hand, since the function   is   , and by (28)-(29)   has a local minimum at the origin, then 
  

  
|
   

  . 

Consequently, the hypothesis (19) follows from (31) and the fact that 
  

  
|
   

    

Since   ( ) satisfies 
 

  
0 .    

  

  
/1
    ( )

  , and noticing that (23) can be rewritten in terms of   ( ) as 

 
  ( )  

  

  
 ( )     ( )  ( ) 

 ( )    (36) 

then the hypothesis (21) is directly verified. 

Finally, from (21), (33) and the positive definiteness of   ( ) it follows 

 
 (    

  

  
)   (   )  

  

  
, ( )   ( ) -                                                                                                        

 

 
  (   )  

  

  
, ( )   ( ) -   (     ( ))  

  

  
, ( )   ( )  ( )- 

 

 
 [  ( )  

  

  
 ( )] (    ( ))      ( )   

  ( )  ( ) 
 ( )         

 

       ( )  ( )(   
 ( ))      ( )   

  ( )  ( ) 
 ( )               

  ,    ( )-   ( ),   
 ( )-                                                                       

which is the hypothesis (22). Applying Theorem 3.1, the result is obtained. 

 

Remark 3.4. The expression (33) provided by Theorem 3.2 can be used to construct an inverse optimal controller, in the 

following sense: instead of solving the steady-state HJB equation directly to minimize some given performance measure, 

one can flexibly specify   ( ) and   ( ), while from (36)   ( ) is parameterized as in (36). 
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Remark 3.5. As in Theorem 3.1, it is not always easy to satisfy the hypotheses (28)-(32) of Theorem 3.2. However, for 

affine systems with relative degree one, the functions   ( ) and   ( ) can be chosen such that the conditions (28)-(32) are 

fulfilled. 

 

4.- INVERSE OPTIMAL PREDEFINED-TIME SLIDING MANIFOLD 

REACHING IN LINEAR SYSTEMS. 

Definition 4.1. [15] Let         be a smooth function, and define the manifold  

   *      ( )   +  (37) 

If for an initial condition     , the solution of (1)  (    )    for all  , the manifold   is called an integral manifold. 

Definition 4.2. [15] If there is a nonempty set        such that for every initial condition     , there is a finite 

time      in which the state of the system (1) reaches the manifold   (39), then the manifold   is called an sliding mode 

manifold. 

Consider the following linear time-invariant system subject to perturbation: 

  ̇( )    ( )    ( )   (   )  ( )      (38) 

where      is the system state,     , with    , is the system control input,       
     is the system 

perturbation,       , and        has full rank. 

Moreover, consider the function         as a linear combination of the states 

  ( )      

where        is full rank. 

With the above definitions, the main objective of the controller is to optimally drive the trajectories of the system (38) to the 

set   *         + (7) in a predefined time in spite of the unknown perturbation  (   ). The matrix   is selected so 

that the motion of the system (38) restricted to the sliding manifold  ( )       has a desired behavior. 

The dynamics of   are described by 

  ̇( )     ( )     ( )    (   )  ( ( ))      (39) 

It is assumed that the matrix   is selected such that the square matrix         is nonsingular, i.e., such that the system 

(39) has relative degree one. This can be easily accomplished since   is full rank. 

Unperturbed case 

Consider the case when  (   )   . The following result gives an explicit form of the functions  ,    and    which 

characterize the optimal predefined-time stabilizing feedback controller (33). 

Corollary 4.1. Consider the system (39) in absence of the perturbation term, i.e.,  (   )   . The feedback controller (33) 

with the functions  ,    and    selected as 

 
 ( )   

 
   (   )

 
    (40) 

 
  ( )  

   

 
   .   ( ( ))/ ,(  ) (  )- (41) 

   ( )   (   )
 ,(  )  -   ( ) (42) 

with     ,       and    (   ) , stabilizes the system (39) in predefined time with     (  )     . Moreover, 

this controller solves the optimal predefined-time stabilization problem (16) for the system (39) with the performance 

integrand  (   )    ( )    ( )   
   ( ) , where    and    are given by (42) and (41), respectively, and    is given 

by (36). 

Proof. It is easy to see that all the conditions of Theorem 3.2 are satisfied. Indeed, note that the function   in (40) is   , and 

satisfies the hypotheses (28) and (29). In the same manner, the function    in (42) satisfies the hypothesis (31), and defining 

the function    as in (36), the hypothesis (32) is also satisfied. 

On the other hand, the derivative of   along  ̇           is calculated as (note that ‖
  

  
‖
 

     ) 
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 ̇  
  

  
,        ( )-                                                                          

 
 
  

  
*      ( 

 

 
  
  ( )  

 ( )  
 

 
  
  ( )(  ) 

  

  

 

)+ 
 

 
  

 

   
   (  ) ‖

  

  
‖
 

                                                                     
 

 
  

 

   
   (  )                                                                             

 

Thus, the hypothesis (30) is satisfied. Then, the result is obtained by direct application of Theorem 3.2. 

 

Perturbed case 

Now, consider the case when  (   ) is a matched non-vanishing perturbation. Under the idea of integral sliding mode 

control [16-17], the following result provides a controller that rejects the perturbation term  (   ) in predefined-time and, 

once the perturbation term is rejected, this controller optimally stabilizes the system (39) in predefined-time.  

Corollary 4.2. Consider the system (39) and let the function  (   ) be a matched and non-vanishing perturbation term, i.e. 

there exists a function  ̅(   ) such that  (   )    ̅(   ) and ‖ ̅(   )‖   , with       a known constant. Then, 

splitting the control function $u$ into two parts,        , and selecting 

(i)    as the optimal predefined-time stabilizing feedback controller (33), with the functions  ,    and    as in 

Corollary 4.1 with parameters       and       , and 

(ii)     (  )  0 ‖  ‖
 

‖ ‖
    (     )1, with      ,       ,    , and the auxiliary sliding variable 

     , where   is an integral variable, solution of  ̇           , 

the system perturbation term  ̅(   ) is rejected in predefined time     and, once the perturbation term is rejected, the system 

(39) is optimally predefined-time stabilized with predefined time  (  )     , with respect to the performance  (   )  

  ( )    ( )   
   ( ) , where    and    are given by (42) and (41), respectively, and    is given by (36). 

Proof. By the definition of  ,  ,   and   , the dynamics of   are obtained as 

  ̇   ̇   ̇                                                                 

        (       ̅)   ̇                   

    (    ̅)                                                  

 
  [ ‖  ‖

 

‖ ‖
    (     )]     ̅  

 

By direct application of Lemma 1.3,     for      . Once the dynamics of (39) are constrained to the manifold    , 

then, from  ̇   , the equivalent control (3) value of    is    
    ̅. Therefore, the sliding mode dynamics of  ,  ̇  

        , are invariant with respect to the perturbation. By the definition of    a direct application of Corollary 4.1 

yields the desired result. 

 

5.- EXAMPLE 

Consider a satellite system as presented in [18], subject to external disturbances 

    ̇  (     )     √  ⁄     ( )     

   ̇  (     )     √  ⁄     (  
  

 
)     

   ̇  (     )     √  ⁄     (  
  

 
)      

(43) 

where, for        ,     are the angular velocities of the satellite around the principal axes,    are the control input torques, 

and    represent the moments of inertia. 
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Defining       for        ,   ,          -
 , and   ,          -

 , the system (43) can be represented as the linear 

perturbed system 

  ̇      (   )   

where  (   )    ̅(   ) is a matched perturbation which represents the nonlinearities and uncertainties, with   

    .
 

  
 
 

  
 
 

  
/, and  ̅(   )  0(     )     √  ⁄     ( )   (     )     √  ⁄     .  

  

 
/   (     )     

√  ⁄     .  
  

 
/1
 

. Furthermore ‖ ̅( )‖     , with    
  √(     )

  (     )
  (     )

 

 
 for ‖ ‖   . 

The goal is to optimally stabilize the equilibrium point     of the satellite (eliminate rotation movements around the 

principal axes) in predefined time. With this aim, choose  ( )    , with       (        ) so that        . 

According to Corollary 4.2,    is implemented as in (33) with the functions  ,    and    selected as  

 
 ( )   

 
    (   )

 
      

 
    ‖  ‖

 
      

 
  ( )  

     

 
   (  

  
    ‖  ‖

   
    )       

   ( )      .  

On the other hand,   and    are chosen according to the part (ii) of Corollary 4.2. 

Simulations were conducted using the Euler integration method, with a fundamental step size of         . The numerical 

values of the parameters are          
 ,            

 ,            
  and      . The initial conditions of the 

integrators were selected as:  ( )  ,         - , and  ( )  ,       - . In addition, the controller gains were adjusted to: 

     ,      ,          
 

 
 and    

 

 
. 

Note that  ( )    for                        (see Figure 1), and from that instant on, the equivalent control signal 

   
  (approximated using the low-pass filter   ̇  

     
    , with       , see [3]) cancels the perturbation term 

 ̅(   )  0(     )     √  ⁄     ( )   (     )     √  ⁄     .  
  

 
/   (     )     √  ⁄     .  

  

 
/1
 

 

(see Figure 2). 

Once the perturbation is canceled, the optimal predefined-time stabilization of the variable  ( ) takes place. It can be seen 

that  ( )    for                        (see Figure 3). It can be noticed that  ( )      , if and only if     

since       (        ) is invertible. Then, for                       , the state  ( )    (see Figure 4). 

Figure 5 shows that the cost, as a function of time, grows quickly to a steady state value corresponding to $ ( (    )). 
Finally, Figure 6 shows the first component of the control signal (torque) versus time. It is important to remark that this 

controller yields discontinuous signals in order to cancel the persistent perturbation  ̅(   ).  

 

                                         Figure 1       Figure 2 

Function ‖ ( ( ))‖  Note that  ( ( ))    for                      Perturbation cancellation (1st component). The equivalent 

           .      control was approximated with a low pass filter with a time 

                              constant of       . 
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Figure 1 

Function ‖ ( ( ))‖  Note that  ( ( ))    for          
         . 

 

Figure 2 

Evolution of the states  ( )  Note that  ( )    for   
              . 

 

Figure 3 

Function  ( )  ∫       
    

 
   

  

  
    Note that  ( ) 

reachs its steady state value corresponding to  ( (    )). 

 

Figure 4 

Control input (1st component)  

 

6.- CONCLUSIONS 

In this paper, the problem of optimal predefined-time stability was investigated. Sufficient conditions for a controller to be 

optimal predefined-time stabilizing for a given nonlinear system were provided. Moreover, under the idea of inverse 

optimal control, and considering nonlinear affine systems and a certain class of performance integrand, the explicit form of 

the controller was also derived. This class of controllers was applied to the predefined-time optimization of the sliding 

manifold reaching phase in linear systems, considering both the unperturbed and the perturbed cases. For the unperturbed 

case, the developed result was applied directly, while for the perturbed case it was used jointly with the idea of integral 

sliding mode control to provide robustness. The developed control schemes were performed for the predefined-time 

optimization of the sliding manifold reaching phase in a satellite system model. Simulation results supported the expected 

results. 
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