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ABSTRACT / RESUMEN 

This paper studies the use of NEON instructions for the implementation of elliptic curve cryptographic primitives on ARM 

Cortex-A processors. Starting from the analysis of point arithmetic formulas in different coordinate systems it was possible 

to identify several operations with no data dependency. Then, these operations were conveniently grouped in pairs to perform 

them in parallel using the NEON engine. Following this approach, dual NEON-based multiplications and squarings in the 

finite field 𝔽𝑝 are proposed. Furthermore, these dual 𝔽𝑝 operations are also used to speed up multiplications and squarings 

over the field extension 𝔽𝑝2. Finally, after integrating them into the point addition and point doubling formulas, we measure 

their impact on the execution time of scalar multiplications on elliptic curves defined over both finite fields. By using a mixed 

C/NEON implementation approach our solution is easily scalable at run time to support different curve sizes. Experiments 

conducted on the ARM Cortex-A9 processing system embedded in the Xilinx XC7Z020 device reported performance 

improvements of the NEON-based scalar multiplication between 32% and 38% and between 9% and 34% compared to a 

conventional implementation of the same operation on 254-bit, 384-bit and 510-bit curves over 𝔽𝑝 and 𝔽𝑝2 respectively. 

Keywords: elliptic curve cryptography, scalar point multiplication, ARM Cortex-A processors, NEON instruction set. 

Este trabajo estudia el empleo del repertorio de instrucciones NEON para la implementación de primitivas criptográficas de 

curvas elípticas sobre procesadores ARM Cortex-A. Realizando un análisis de las ecuaciones para la aritmética de puntos 

en diferentes sistemas de coordenadas fue posible identificar varias operaciones sin dependencia de datos entre ellas. De 

esta manera, dichas operaciones fueron agrupadas en pares para ser ejecutadas simultáneamente utilizando el coprocesador 

NEON. Siguiendo este enfoque se implementan operaciones de doble multiplicación y doble cuadrado en el campo finito 𝔽𝑝. 

Adicionalmente, estas operaciones dobles en 𝔽𝑝 son empleadas para acelerar las operaciones de multiplicación y cuadrado 

sobre la extensión de campo 𝔽𝑝2. Finalmente, al integrar todas estas operaciones dentro de los procedimientos para suma y 

doblado de puntos, se mide el impacto de las mismas en el rendimiento de la multiplicación escalar en curvas elípticas 

definidas sobre ambos campos finitos. Gracias a una implementación mixta empleando C y NEON nuestra solución es 

fácilmente escalable en tiempo de ejecución para brindar soporte a varios tamaños de curva. Los experimentos realizados 

en el sistema de procesamiento ARM Cortex-A9 empotrado en el dispositivo XC7Z020 de Xilinx reportaron mejoras de 

rendimiento entre un 32% y un 38% y entre un 9% y un 34% para una multiplicación escalar basada en NEON con respecto 

a una implementación convencional de dicha operación en curvas de 254 , 384 y 510 bits sobre 𝔽𝑝 y 𝔽𝑝2 respectivamente. 

Palabras claves: criptografía de curvas elípticas, multiplicación escalar, ARM Cortex-A, NEON.  

Aceleración de la aritmética de curvas elípticas en procesadores ARM utilizando instrucciones NEON 

 

1. -INTRODUCTION 

The use of elliptic curves in cryptography was proposed independently by Miller [1] and Koblitz [2] when they discovered 

that the set of points satisfying the curve equation together with point addition as group law form a suitable group to build 
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discrete logarithm systems. Since then, many protocols based on elliptic curves have been developed and included into several 

standards [3-6]. From an implementation perspective, the main advantage of elliptic curve cryptography relays on its relatively 

small key-length requirement compared to that of systems based on integer factorization or discrete logarithms in the 

multiplicative group of finite fields. Shorter keys translate into lower storage requirements and smaller computation times, 

two great features in general, and specially for embedded platforms where memory space and processing capabilities are 

usually constrained. 

Scalar multiplication is the most important operation in elliptic curve protocols. For this reason, numerous mechanisms aimed 

to improve the performance of this operation have been proposed. Some of them intend to reduce the number of point addition 

and point doubling operations required to compute a scalar multiplication. Other mechanisms explore different elliptic curve 

point representations leading to efficient addition and doubling formulas; while a third group is focused on minimizing the 

computational cost of the underlying finite field arithmetic [7]. These alternatives are not mutually exclusive, in fact, in most 

practical cases they are used combined with each other in order to obtain better results. Whatever the case, a common way to 

boost up performance is to complement those algorithmic improvements with the proper use of any specific feature of the 

selected implementation platform providing processing acceleration. In this sense, the ARM Cortex-A family of processors 

comes equipped with NEON, a Single Instruction Multiple Data (SIMD) extension that can be exploited to speed up elliptic 

curve arithmetic on ARM-powered devices. In particular, this work focuses on using NEON instructions to accelerate 

operations in the underlying finite fields on top of which elliptic curves are built. 

Different approaches can be followed to implement finite field arithmetic using NEON. A first option is to parallelize 

computations within a single field operation. Inconveniences arise with this alternative when using operands represented in 

the conventional non-redundant (full-radix) form since most SIMD architectures, including NEON, do not support carry 

propagation across data items that are processed in parallel. Accordingly, several implementations adopt the reduced-radix 

(redundant) representation suggested in [8] to ease the handling of carry propagation. However, as stated in [9], such approach 

leads to more intermediate partial products being computed. For that reason and although there are clever proposals [9,10] 

achieving parallelization within a single field operation involving full-radix operands, this work explores a second way of 

using the NEON engine. It consists of performing two field operations in parallel as described for the attribute-based 

encryption scheme implemented in [11]. Following such approach, the non-redundant representation does not suffer from 

carry propagation issues. That is, a dual multi-precision finite field operation can be split into a sequence of consecutive dual 

single-precision computations intended to be executed in separate iterations. Thus, carry values can be passed from one 

iteration to another until the entire multi-precision computation finishes. 

In this paper we construct NEON-based 𝔽𝑝 and 𝔽𝑝2 finite field multiplication and squaring operations with the final objective 

of speeding up elliptic curve arithmetic. We begin with the identification of those field multiplications and squarings than can 

be parallelized within the point addition and doubling formulas in different coordinate systems. Next, we placed our NEON-

based variants of these operations into the elliptic curve point arithmetic. As result, we observed performance improvements 

between 32% and 38% (over 𝔽𝑝) and between 9% and 34% (over 𝔽𝑝2) for the scalar multiplication primitive on 254-bit, 

384-bit and 510-bit curves. 

The rest of this paper is organized as follows: Section 2 briefly discusses some previous results related to the subject presented 

in this work. In Section 3 an overview on elliptic curve arithmetic is given. Section 4 presents our implementation of NEON-

based field operations as well as their application into the elliptic curve arithmetic. Section 5 shows the timing results obtained 

from the experiments conducted on the ARM Cortex-A9 processing system embedded in the Xilinx XC7Z020 device. Finally, 

concluding remarks are provided in Section 6. 

 

2.- RELATED WORK 
Several researches targeting SIMD-based implementations of cryptographic primitives have been reported in the literature. In 

particular, the use of NEON vectorization has been proposed by [12-15] to speed up elliptic curve arithmetic. In [11] the 

authors also proposed the use of NEON in the context of an attribute-based encryption scheme which exploits the computation 

of bilinear pairings on elliptic curves. Other works like [9,10] used NEON instructions to implement modular multiplication 

and modular squaring primitives which are common to several cryptographic schemes including elliptic curves. The particular 

scenarios targeted by these works are quite diverse. For example, in [12] a reduced-radix representation is used to perform 

NEON-based multiplications to accelerate Curve25519 and Ed25519 curve arithmetic. NEON vectorization was applied 

across two independent multiplications inside point arithmetic formulas as well as within a single multiplication for those that 

could not be paired. The authors of [13] implemented a GLV-based scalar multiplication for the Ted127-glv4 curve in which 

interleaved ARM-NEON instructions were used to perform independent 128-bit multiplications in parallel. The application 

of NEON vectorization to boost up the computational performance of elliptic curves defined over binary fields has been 
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studied in [14]. Specifically, NEON was used to accelerate the polynomial multiplication of two vectors of eight 8-bit 
polynomials producing 128-bit products. This primitive was then used in point arithmetic on random and Koblitz binary 

curves. In [15], interleaved ARM-NEON instructions were employed to speed up multiplications over 𝔽𝑝2 with the final goal 

of accelerating a 4-dimensional scalar multiplication on the Fourℚ twisted Edwards curve. In the case of [11], the authors 

showed a way to perform two simultaneous modular multiplications using NEON vectorization to accelerate the computation 

of the optimal Ate pairing over a 254-bit Barreto-Naehrig curve used in the context of attribute-based encryption.  

Researches summarized above exemplify the successful application of SIMD techniques on ARM processors to speed up 

cryptography. Along with NEON most of them employed algorithmic optimizations applicable to their particular scenarios 

and, from an implementation perspective, all of them targeted specific-length implementations optimizing code for a particular 

bit-length. That is the main difference compared to our proposal. Our intention is to exploit NEON vectorization while keeping 

the implementation flexible enough to allow scalability. Thus, the library implemented in this work is able to switch at run 

time between curves of the same family but of different sizes while keeping the same NEON-based processing core. 

 

3.- ELLIPTIC CURVE ARITHMETIC 
Let 𝔽𝑝𝑘 be a finite field with a prime characteristic 𝑝 different from 2 and 3, and integer 𝑘 > 0. An elliptic curve 𝐸 over 𝔽𝑝𝑘 

can be defined by the simplified Weierstrass equation 𝐸(𝔽𝑝𝑘): 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 where curve coefficients 𝑎, 𝑏 ∈ 𝔽𝑝𝑘 must 

satisfy the inequality 4𝑎3 + 27𝑏2 ≠ 0 (see [7] for further details).  

The most important operation used in elliptic curve protocols is the scalar point multiplication. It is denoted by [𝑠]𝑃, where 𝑠 

is a positive integer and 𝑃 is a point in 𝐸(𝔽𝑝𝑘). A scalar multiplication can be interpreted as the addition of the point 𝑃 by 

itself 𝑠 times which leads to a point 𝑄 also in 𝐸(𝔽𝑝𝑘). Computing scalar multiplications from this naive approach is extremely 

inefficient. In practice, algorithms exploit some special representation of 𝑠 in order to reduce the required number of point 

additions. The most common approaches are derived from the binary representation of 𝑠. Algorithm 1 [7], for example, 

outlines the left-to-right strategy in which 𝑠 (with 𝑠𝑛−1 = 1) is scanned bit-by-bit from the left while 𝑄, firstly initialized to 

𝑃, is doubled at each iteration. If the corresponding bit of 𝑠 is set, the point 𝑄 is additionally updated by adding 𝑃. Once all 

bits of 𝑠 are exhausted 𝑄 will hold the result [𝑠]𝑃. Point doubling (i.e., 𝑃 + 𝑃 = [2]𝑃) is distinguished from point addition 

since doubling formulas are usually more efficient in terms of storage requirements, computing time or both. 

 
Algorithm 1 

Left-to-right scalar multiplication 

INPUT: 𝑠 = (𝑠𝑛−1, ⋯ , 𝑠1, 𝑠0)2, 𝑃 ∈ 𝐸(𝔽𝑝𝑘). 

OUTPUT: 𝑄 = [𝑠]𝑃. 

1. 𝑄 = 𝑃; 

2. for 𝑖 = 𝑛 − 2 to 0 do 

3.     𝑄 = [2]𝑄; 

4.     if 𝑠𝑖 == 1 then 

5.         𝑄 = 𝑄 + 𝑃; 

6.     end 

7. end 

8. Return 𝑄; 

 

Addition and doubling formulas allowing to compute 𝑃3 = 𝑃1 + 𝑃2 and 𝑃3 = [2]𝑃1 are given by equations (1) and (2) 

respectively, where 𝑃1 = (𝑥1, 𝑦1), 𝑃2 = (𝑥2, 𝑦2) and 𝑃3 = (𝑥3, 𝑦3) are points in 𝐸(𝔽𝑝𝑘) [7].  

 

 
𝑥3 = (

𝑦2 − 𝑦1

𝑥2 − 𝑥1

)
2

− 𝑥1 − 𝑥2

𝑦3 = (
𝑦2 − 𝑦1

𝑥2 − 𝑥1

) (𝑥1 − 𝑥3) − 𝑦1

 (1) 
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𝑥3 = (

3𝑥1
2 + 𝑎

2𝑦1

)

2

− 2𝑥1

𝑦3 = (
3𝑥1

2 + 𝑎

2𝑦1

) (𝑥1 − 𝑥3) − 𝑦1

 (2) 

 

Operations involved in the above equations are defined in the underlying finite field 𝔽𝑝𝑘. Denoting a field inversion, a field 

multiplication and a field squaring by I, M and S respectively, it is easy to see in equation (1) that a point addition costs 

1I+2M+1S, and in equation (2) that a point doubling requires 1I+2M+2S. Throughout this work we do not consider the 

contribution of field additions, subtractions and multiplications by small constants because their impact is negligible when 

compared to that of I, M and S. Then, the performance of the elliptic curve arithmetic will heavily depend on how efficiently 

we are able to perform field inversions, multiplications and squarings. Improvements made down into these field operations 

should be reflected up into the high-level elliptic curve arithmetic. 

 

3.1.- PROJECTIVE COORDINATES 
Equations (1) and (2) are said to be the affine equations for point addition and point doubling respectively since they act on 

points represented in affine coordinates. In most cases field inversion is the most expensive operation. For example, in the 

base field 𝔽𝑝 (i.e., taking 𝑘 = 1) inversions can be computed using the Itoh-Tsujii method [16] or the binary Extended 

Euclidean Algorithm [17] while best choices for multiplications are derived from Montgomery's method [18]. In this setup, 

the inversion to multiplication (I/M) ratio is considered, at best, not less than 8 [19]. Some practical implementations report 

I/M-ratios between 13 and 35 [20,21].  

Field inversions can be avoided at the cost of extra field multiplications by employing projective coordinates. As long as the 

total multiplications count does not exceed the inversion to multiplication ratio, projective equations will perform better than 

affine formulas. A point in projective coordinates is represented by a triple (𝑋, 𝑌, 𝑍) where (𝑋, 𝑌, 𝑍) ∈ 𝔽𝑝𝑘 and 𝑍 ≠ 0. The 

map (𝑋, 𝑌, 𝑍) ↦ (𝑋𝑍−𝑐 , 𝑌𝑍−𝑑) allows to move a projective point to its affine representation. Different values of 𝑐 and 𝑑 

correspond to different projective coordinate systems. Accordingly, when 𝑐 = 𝑑 = 1 we are in presence of standard projective 

coordinates, while values of 𝑐 = 2 and 𝑑 = 3 define Jacobian coordinates [7,22]. 

Inversion-free point addition and doubling formulas are derived from affine equations by simple substitutions of 𝑥𝑖 = 𝑋𝑖𝑍𝑖
−1 

and 𝑦𝑖 = 𝑌𝑖𝑍𝑖
−1 for standard coordinates and 𝑥𝑖 = 𝑋𝑖𝑍𝑖

−2 and 𝑦𝑖 = 𝑌𝑖𝑍𝑖
−3 for Jacobian coordinates. In the case of point addition 

not always both points must be in their projective form. Note that the point 𝑃 remains unchanged during the entire run of 

Algorithm 1. This suggests that 𝑃 can be treated as an affine point (i.e., 𝑍𝑃 = 1) which slightly reduces the complexity of 

point additions. In the case of standard coordinates we can use the equation (3) to compute the point addition 𝑃3 = 𝑃1 + 𝑃2 at 

a cost of 9M+2S, where 𝑃3 = (𝑋3, 𝑌3, 𝑍3), 𝑃1 = (𝑋1, 𝑌1, 𝑍1) and 𝑃2 = (𝑋2, 𝑌2, 𝑍2) with 𝑍2 = 1. Similar equations can be 

obtained either for point doubling in standard or point doubling and point addition in Jacobian coordinates [20].  

 

 𝑋3 = (𝑋1 − 𝑋2𝑍1)[𝑍1(𝑌1 − 𝑌2𝑍1)2 − (𝑋1 − 𝑋2𝑍1)2(𝑋1 + 𝑋2𝑍1)]

𝑌3 = (𝑌1 − 𝑌2𝑍1)[𝑋2𝑍1(𝑋1 − 𝑋2𝑍1)2 − [𝑍1(𝑌1 − 𝑌2𝑍1)2 − (𝑋1 − 𝑋2𝑍1)2(𝑋1 + 𝑋2𝑍1)]] − 𝑌2𝑍1(𝑋1 − 𝑋2𝑍1)3

𝑍3 = 𝑍1(𝑋1 − 𝑋2𝑍1)3

 (3) 

 

Note that expressions for 𝑋3, 𝑌3 and 𝑍3 in equation (3) share several terms. Fast implementations of elliptic curve point 

arithmetic take advantage from this fact to save computation time at the expense of few extra memory locations to store 

reusable intermediate values. We refer the reader to the Explicit-Formulas Database web site [23] for a vast compendium on 

fast point arithmetic formulas. 

Table 1 summarizes multiplication and squaring counts for the standard and Jacobian coordinate equations used in this work. 

Recall from Algorithm 1 that a point doubling always occurs at each iteration of the scalar multiplication loop while point 

additions are only performed when the corresponding bit of the scalar 𝑠 is set. Since 𝑠 is selected uniformly at random in most 

elliptic curve cryptographic protocols it is expected to have similar proportions of ‘1’ and ‘0’ in its binary representation. 

Hence, for 𝑛-bit parameters a scalar multiplication will cost 𝑛 − 1 point doublings and about (𝑛 − 1) 2⁄  point additions. 

Taking 𝑛 = 256, for example, this implies an average cost of 2678M+1275S in standard and 1785M+1403S in Jacobian 
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coordinates. Note that multiplications prevail in both cases. Therefore, accelerating this operation would be a good starting 

point. 

 

Table 1 

Operation counts of point arithmetic 

Coordinates 
Point operation 

Addition Doubling 

Standard 9M+2S 6M+4S 

Jacobian 8M+3S 3M+4S 

 

4.- NEON-BASED ELLIPTIC CURVE ARITHMETIC 

One alternative to boost up the performance of field arithmetic is to take advantage of any specific feature available in the 

selected implementation platform. In this sense, our work focuses on devices populated with ARM processors provided with 

the NEON extended instruction set.  

Typical sizes for the operands used in elliptic curve schemes are currently in the order of 256, 384 and 512 bits [24]. However, 

most ARM processors exhibit a 32-bit architecture [25]. Then, a 256x256 multiplication, for example, have to be split into 

several 32x32 multiplications and 32x32 additions that can be handled by conventional ARM instructions. However, the 

ARM Cortex-A series processors come equipped with NEON, a 128-bit Single Instruction Multiple Data extension. Thus, 

the use of NEON instructions could be very helpful to speed up the field operations underlying elliptic curve arithmetic. 

NEON engine is built around 16 registers of 128 bits (Q0 ~ Q15) that can be accessed as 32 registers of 64 bits (D0 ~ D31). 

Every register can hold a vector of 𝑛 lanes with 𝑚 bits each. Refer to [26] for allowed combinations of 𝑛 and 𝑚. 

Most NEON instructions act over 𝑛 lanes in parallel. They perform the same operation between equivalent lanes on the input 

vectors and store the results in the corresponding lanes on the output vector. Nevertheless, not all instructions support all  

possible combinations of 𝑛 and 𝑚. For example, the vmull instruction illustrated in Figure 1 does not support 64-bit lanes. 

Even when we can specify a 128-bit register as destination operand and two 64-bit registers as source operands, vmull is 

only allowed to process lanes of up to 32-bit. We must also point out that there is no support for carry propagation between 

lanes which is a great inconvenient unless a redundant numeric representation is used. Notwithstanding the above NEON 

provides a useful degree of flexibility by means of the so-called instruction shapes. Most NEON arithmetic instructions come 

in at least two of four different shapes: normal, long, wide and narrow. We only emphasize the long case due to its relevance 

for this work (see [26] for further details). Long-shape arithmetic instructions act on source vectors of 𝑛 lanes of 𝑚 bits each 

and produce an output vector of 𝑛 lanes of 2𝑚 bits each. This fact is clear for the vmull example. Observe in Figure 1 that 

while input vectors have 2 lanes of 32 bits the result is a vector also with 2 lanes but of 64 bits each. This shows a way in 

which one can perform simultaneously two 32x32 multiplications obtaining two 64-bit products as result. 

 

 

Figure 1 

NEON Long-shape instruction example. 
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It would be logical to think that the use of the vmull instruction would double the speed of a 256x256 multiplication since 

we would be able to perform two 32x32 multiplications at once. However, partial products must be accumulated to obtain 

the final result which would require carry values propagating across lanes, feature not supported by NEON. Alternatively, we 

can compute only partial products in parallel and later perform carry propagation sequentially but this would incur in extra 

time penalties mitigating any benefit provided by the parallel multiplication step. A different approach is not to parallelize a 

single 256x256 multiplication but to perform two independents 256x256 multiplications simultaneously. The rest of this 

section discusses in details how to use such approach in the context of elliptic curves. One of our design goals is to build an 

implementation flexible enough such that it enables us to switch at run time between different bit-lengths. For this purpose, 

rather than constructing a fixed-length implementation fully coded with NEON instructions, we propose the implementation 

of some NEON-based kernels that are properly inserted into C code to achieve a balance between speed and flexibility. 

 

4.1.- POINT ARITHMETIC OVER 𝔽𝒑 USING NEON 
As suggested above, anywhere there exist two field multiplications acting on independent data, it is possible to parallelize 

them by means of NEON instructions. The same principle applies for field squarings. Fortunately, point arithmetic equations, 

especially in projective coordinates, can be conveniently arranged to extract many independent field operations. In this sense, 

we propose Algorithm 2 in which operations have been carefully scheduled to break data dependency and group into one pair 

the two squarings and into others four pairs eight of the nine field multiplications required to perform point addition in standard 

coordinates. Multiplications and squarings inside each pair can now be computed in parallel assuming we are provided with 

the proper functions to do it.  

 
Algorithm 2 

Point addition in standard coordinates with independent field multiplications and squarings grouped in pairs 

INPUT: 𝑃1 = (𝑋1, 𝑌1, 𝑍1), 𝑃2 = (𝑋2, 𝑌2, 𝑍2) in standard coordinates with 𝑍2 = 1. 

OUTPUT: 𝑃3 = 𝑃1 + 𝑃2 = (𝑋3, 𝑌3, 𝑍3). 

1. 𝑊 = 𝑌2 ⋅ 𝑍1; 𝐴 = 𝑌2 ⋅ 𝑍1; 

2. 𝑉1 = 𝑋1 − 𝑊; 

3. 𝑈1 = 𝑌1 − 𝐴; 

4. 𝑇2 = 𝑉1
2;𝑇1 = 𝑈1

2; 

5. 𝑇1 = 𝑇1 ⋅ 𝑍1; 𝑊 = 𝑊 ⋅ 𝑇2; 

6. 𝑇3 = 2𝑊; 

7. 𝑇2 = 𝑉1 ⋅ 𝑇2; 

8. 𝑇1 = 𝑇1 − 𝑇2; 

9. 𝑇1 = 𝑇1 − 𝑇3 

10. 𝑊 = 𝑊 − 𝑇1 

11. 𝑌3 = 𝑈1 ⋅ 𝑊; 𝐴 = 𝐴 ⋅ 𝑇2; 

12. 𝑋3 = 𝑉1 ⋅ 𝑇1; 𝑍3 = 𝑇2 ⋅ 𝑍1; 

13. 𝑌3 = 𝑌3 − 𝐴; 

14. Return (𝑋3, 𝑌3, 𝑍3); 

 

Hereafter we generically refer to the parallel computation of two field multiplications as a dual field multiplication. When a 

concrete finite field needs to be specified, then the word field will be substituted by the notation used to identify that particular 

finite field. That is, a dual 𝔽𝑝 multiplication refers to a dual field multiplication in the base field 𝔽𝑝. The same reasoning 

applies for squarings. Let us now denote a dual field multiplication by Md and a dual field squaring by Sd. The running time 

of Algorithm 2 will be dominated by the cost of 4Md+1Sd+1M which should be better than 9M+2S (see Table 1) as long as 

we get Md < 2M and Sd < 2S. 

Although we only exemplify the parallelization opportunities of point addition in standard coordinates, it is worthwhile to 

mention that similar analyses were conducted for the remaining cases. As a result, we built procedures for point doubling in 

standard coordinates as well as for point addition and point doubling in Jacobian coordinates with computational costs of 

3Md+1Sd+2M, 4Md+1Sd+1S and 1Md+2Sd+1M respectively. This emphasizes the need to build functions to compute dual 

field multiplications and squarings. We now continue with the implementation of such functions by using NEON instructions. 

 

4.1.1.- DUAL FIELD MULTIPLICATION IN 𝔽𝒑 
Best choices to perform multiplications in 𝔽𝑝 are derived from Montgomery's method. In this work we use the Separated 

Operand Scanning (SOS) algorithm proposed in [27]. This algorithm proceeds by performing a multi-precision multiplication 

followed by a Montgomery reduction.  

Multi-precision integer multiplications are commonly computed through the well-known schoolbook method [28]. The inputs 

of this method consist of two 𝑙-length arrays a[] and b[] holding the coefficients of the representation in base 2𝑤 of the 𝑛-bit 
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integers 𝑎 and 𝑏, with 𝑙 = ⌈𝑛 𝑤⁄ ⌉. The value of 𝑤 is usually selected to match the word size of the target processor. The 

product 𝑡 = 𝑎 ⋅ 𝑏 is stored in the 2𝑙-length array t[] which should have all positions firstly initialized to zero. Two nested 

loops, running from i=0 to l-1 the outer and from j=0 to l-1 the inner, gradually fill t[] with the result. To achieve this, the 

multiply-and-accumulate operation shown in equation (4) is executed at each iteration of the inner loop.  

 

 (C, t[i+j])=t[i+j]+a[j]⋅b[i]+C (4) 

 

The first step towards a dual 𝔽𝑝 multiplication is to perform two multi-precision multiplications in parallel. This is where 

NEON technology comes into action. Let have arrays x[], y[] and u[] holding the additional multiplicands and product 

respectively. Using the vpaddl and vmlal instructions we coded an assembly language subroutine called 

neon_dual_mac2 which is able to compute two simultaneous multiply-and-accumulate operations. This routine takes 

parameters pt
ij
, pu

ij
, aj, xj, bi and y

i
. The first two are pointers to the location i+j of both t[] and u[] respectively. Thus, we can 

access the values at these locations, process them and write back the corresponding results. The remaining parameters are just 

the values a[j], x[j], b[i] and y[i] to be multiplied at the current iteration. 

Figure 2 graphically illustrates the arithmetic kernel of neon_dual_mac2. Register Q0 holds a 4x32-bit vector with the 

values tij and uij pointed by pt
ij
 and pu

ij
 respectively, and carry values C0 and C1 that are initially loaded with zero. Then, the 

pairwise long-shape addition vpaddl.u32 q0, q0 computes in parallel values C0 + tij and C1 + uij storing the results also 

in Q0 but now as a 2x64-bit vector. Register Q1 is accessed through its two separated 64-bit D-registers D2 and D3. Register 

D2 allocates a 2x32-bit vector holding the multiplicand words aj and xj while register D3 is loaded with bi and y
i
. Finally, the 

long-shape multiply-and-accumulate instruction vmlal.u32 q0, d2, d3 computes at the same time the value 

(C0
'
,tij
' )=tij+aj⋅bi+C0 and the value (C1

'
,uij

' )=uij+xj⋅yi+C1. Both of these results are also stored in the Q0 register viewed as a 2x64-bit 

vector. The computed values tij
'
 and uij

'  are sent back from the lower half of both 64-bit lanes to the memory locations pointed 

by pt
ij
 and pu

ij
 respectively. Carry values C0

'
 and C1

'
 are left inside Q0 ready for a subsequent call to neon_dual_mac2 at 

the next iteration of the dual multi-precision multiplication procedure. 

 

 

Figure 2 

Kernel of neon_dual_mac2. 

 

Load and store instructions allowing to move data between ARM memory and NEON vectors were omitted from Figure 2 to 

keep the diagram as simple as possible. However, it is worthwhile to mention that the time required for these data transfers to 

take place obviously contributes to the total execution time of the dual multi-precision multiplication. 

The second part of the SOS modular multiplication algorithm consists in the Montgomery reduction phase. A single 

Montgomery reduction takes as inputs an 𝑙-length array p[] containing the 𝑛-bit prime modulus 𝑝 together with an 2𝑙-length 

array t[] holding the product 𝑡 = 𝑎 ⋅ 𝑏 from a previous multi-precision multiplication step. Once the computation finishes the 

result 𝑐 = 𝑡 ⋅ 𝑅−1 mod 𝑝 is stored in the 𝑙-length output array c[]. Here 𝑙 = ⌈𝑛 𝑤⁄ ⌉ as defined previously. In addition, 

Montgomery reduction requires precomputed parameters 𝑅 = 2𝑁 mod 𝑝, where 𝑁 = 𝑙 ⋅ 𝑤 and 𝑛0
′ = −𝑝0

−1 mod 𝑅. From the 

implementation point of view, a multi-precision Montgomery reduction is very similar to a multi-precision multiplication 
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since it is also based on a nested loops structure. Furthermore, at the heart of the inner loop we also find a multiply-and-

accumulate operation similar to that of a multi-precision multiplication. Therefore, when turning a Montgomery reduction 

into its dual variant, it is possible to reutilize the neon_dual_mac2 routine discussed above. However, in this case there 

are two additional operations that have to be performed using the NEON engine: a dual single-precision multiplication and a 

dual carry propagation. For this purpose, we coded two new subroutines called neon_dual_mul and neon_dual_carry 

respectively. The subroutine neon_dual_mul takes a pointer pq
i
 and words ti, ui and n0

'  as input parameters. As shown in 

Figure 3, only the registers D0 and D1 and a normal-shape vmul instruction are involved. Register D0 is used as a 2x32-bit 

vector whose lanes are loaded with the values ti and ui. Then, both lanes are multiplied by the parameter n0
'  contained into the 

lower half of D1. The resulting product q
i
=ti⋅n0

'  is stored into the memory location pointed by pq
i
 while ri=ui⋅n0

'  is sent back as 

the return value of the subroutine. This different treatment in the way of returning the results allows us to save a data transfer 

between ARM system memory and NEON registers. 

 

 

Figure 3 

Kernel of neon_dual_mul. 

 

Figure 4 shows the neon_dual_carry functionality. The input parameters are the pointers pt and pu pointing to the position 

of arrays t[] and u[] respectively from which it is desired to start the propagation of the corresponding carry values. The length 

𝑙 indicating the end of carry propagation is also given as input. Observe that the procedure only involves the Q0 register and 

the long-shape vpaddl instruction used both in the same way they were used at the beginning of neon_dual_mac2. At 

each iteration the current coefficients ti and ui are accessed through pt and pu and loaded into Q0 at the positions shown in 

Figure 4. Then, they are both added with the corresponding carry values and the results are stored into Q0 again. The updated 

coefficients ti
'
 and ui

' are sent back through pt and pu to the corresponding locations on arrays t[] and u[] respectively. The new 

carry values C0
'
 and C1

'
 are left in Q0 ready for the next iteration. This process ends when the iteration count matches length 𝑙. 

 

 

Figure 4 

Kernel of neon_dual_carry. 

 
Algorithm 3 shows how the above pieces are tied together to conform a mixed C/NEON dual SOS Montgomery modular 

multiplication. This mixed approach allowed us to build a flexible and scalable solution that supports different field sizes at 

run time. Step 7 performs the dual multi-precision multiplication phase while step 12 computes the dual Montgomery 
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reduction. Note that a correction is applied to the values resulting from Montgomery reduction if they are greater or equal to 

the modulus. Also note that this final correction step is not parallelized since it turns out that not always both values need to 

be corrected at the same time. Even though comparisons t[]≥p[] and u[]≥p[] always take place and so at least them could be 

performed in parallel, we experimentally found that there were no speed improvements in doing so due to the time penalties 

caused by the required extra data transfers between the ARM system memory and NEON registers. 

 

Algorithm 3 

Dual SOS modular multiplication procedure 

INPUT: 𝑙-length arrays a[], b[], x[], y[] and p[]; parameter n0
' . 

OUTPUT: 𝑙-length arrays c[] and z[]. 

/* Input arrays a[], b[], x[], y[] and p[] should hold the coefficients of the radix-2𝑤 representation of operands 
𝑎, 𝑏, 𝑥, 𝑦 and modulus 𝑝 respectively. Once computation finishes, output arrays c[] and z[] will hold the 
coefficients of products 𝑐 = 𝑎𝑏𝑅−1 mod 𝑝 and  𝑥 = 𝑥𝑦𝑅−1 mod 𝑝 in  radix-2𝑤 representation.*/ 

1. Define t[], u[]; /* Arrays t[] and u[] must be of length 2𝑙 to hold the radix-2𝑤 coefficients of the intermediate 
multi-precision products 𝑡 = 𝑎 ⋅ 𝑏 and 𝑢 = 𝑥 ⋅ 𝑦 respectively. */ 

2. Define q, r;  

3. for 𝑖 = 0 to 2𝑙 − 1 do // Required before multi-precision multiplication 

4.     t[i] = 0; 

5.     u[i] = 0; 

6. end 

7. for 𝑖 = 0 to 𝑙 − 1 do // Dual multi-precision multiplication 
8.     for 𝑗 = 0 to 𝑙 − 1 do 
9.         neon_dual_mac2(&t[i+j], &u[i+j], a[j], x[j], b[i], y[i]); 
10.     end 

11. end 

12. for 𝑖 = 0 to 𝑙 − 1 do // Dual multi-precision Montgomery reduction 

13.     r =neon_dual_mul(n0
' , &q, t[i], u[i]); 

14.     for 𝑗 = 0 to 𝑙 − 1 do 
15.         neon_dual_mac2(&t[i+j], &u[i+j], q, r, p[j], p[j]); 
16.     end 

17.     neon_dual_carry(&t[i+j], &u[i+j], l); 
18. end 

19. for 𝑗 = 0 to 𝑙 − 1 do 

20.     c[j]=t[j+l]; 
21.     z[j]=u[j+l]; 
22. end 

/* Verifying if final corrections are required. */ 
23. if t[]≥p[] then // Multi-precision comparison between the higher half of array t[] and the modulus p[] 
24.     for 𝑗 = 0 to 𝑙 − 1 do // Final correction required 
25.         c[j]=c[j]-p[j]; 
26.     end 

27. end 

28. if u[]≥p[] then // Multi-precision comparison between the higher half of array u[] and the modulus p[] 
29.     for 𝑗 = 0 to 𝑙 − 1 do // Final correction required 
30.         z[j]=z[j]-p[j]; 
31.     end 

32. end 
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4.1.2.- DUAL FIELD SQUARING IN 𝔽𝒑 
Multi-precision squarings are usually more efficient than generic multi-precision multiplications of an integer 𝑎 by itself 

because they take advantage from the fact that intermediate products 𝑎𝑗 ⋅ 𝑎𝑖 and 𝑎𝑖 ⋅ 𝑎𝑗 are the same. Hence, almost half of 

the single-precision multiplications can be skipped [29]. According to this, the S/M-ratio is expected to be less than 1. 

Presumably, dual multi-precision squarings should exhibit a similar behavior. Then, it should be better to perform dual multi-

precision squarings instead of dual multi-precision multiplications whenever possible. To accomplish this, Algorithm 3 can 

be turned into dual field squaring by simply substituting the multi-precision multiplication at step 7 by a multi-precision 

squaring. The reduction phase keeps the same.  

The dual multi-precision squaring implementation is also based on a nested loops structure in which two simultaneous 

multiply-and-accumulate operations need to be performed. However, as shown in equation (5), an extra multiplication by 2, 

that was not present in the case of multi-precision multiplication, is now required. This apparently simple change actually 

forces us to use a few extra operations to handle arising overflows which prevent us from reusing the neon_dual_mac2 

routine. In addition, when 𝑖 = 𝑗 (i.e., 𝑎𝑗 = 𝑎𝑖), which happens at every new iteration of the outer loop, a different and simpler 

treatment is required. For those reasons, we defined two new subroutines: neon_dual_sqr_mac2 to handle intermediate 

products of the type 2 ⋅ 𝑎𝑗 ⋅ 𝑎𝑖  and neon_dual_mac which takes care of the 𝑎𝑖 ⋅ 𝑎𝑖 cases.  

 

 (C, t[i+j])=t[i+j]+2⋅a[j]⋅a[i]+C (5) 

 

The subroutine neon_dual_sqr_mac2 takes the same input parameters as those of neon_dual_mac2. However, the 

operands to be pairwise multiplied are not located in different arrays. They come from different locations of the same array 

a[] in the case of operands aj and ai, as well as xj and xi which correspond to different locations of the array x[]. Figure 5 shows 

the functional diagram of neon_dual_sqr_mac2. Instructions 1, 2 and 5 perform the actual dual multiply-and-accumulate 

operation. Note the similarity between them and the kernel of neon_dual_mac2 depicted in Figure 2. The left shifting at 

instruction 4 corresponds to the multiplication by 2 while instructions 3, 6 and 7 are those that handle the overflows. In 

particular, instruction 3 saves the most significant bit of both intermediate products aj ⋅ ai and xj ⋅ xi before they are shifted out. 

Later, instructions 6 and 7 combine these bits with the updated carry values C0
'
 and C1

'
 putting the results in the register Q0. 

These combined values are the input carry values of the next iteration. Finally, the outputs tij
'
 and uij

'  resulting from instruction 

5 are sent back to the correct memory locations of arrays t[] and u[] respectively. 

 

 

Figure 5 

Kernel of neon_dual_sqr_mac2. 
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The subroutine neon_dual_mac is very much simpler. It is actually a reduced version of neon_dual_mac2 since it does 

not handle any input carry values. This can be easily appreciated in Figure 6. Note that neon_dual_mac only uses a single 

vmlal instruction to compute the multiply-and-accumulate operations (C0
'
,tii
' )=tii+ai⋅ai and the value (C1

'
,uii

' )=uii+xi⋅xi. The right 

shift instruction used next is only intended to get the register Q0 ready for a following and immediate call to the subroutine 

neon_dual_sqr_mac2. Obviously, before the values tii
'
 and uii

'  get lost because of the shifting instruction they are sent 

back to their corresponding locations inside arrays t[] and u[]. 

 

 

Figure 6  

Kernel of neon_dual_mac. 

 

Replacing the multi-precision multiplication loop at step 7 of Algorithm 3 by the squaring procedure shown in Algorithm 4 

turns the dual SOS modular multiplication into a dual SOS modular squaring operation. Although it is evident that 

neon_dual_sqr_mac2 is much more complex than neon_dual_mac2, the shorter inner loops involved in the squaring 

algorithm ensure the expected improvement in terms of speed. 

 

Algorithm 4  

Dual multi-precision squaring loop 

INPUT: 𝑙-length arrays a[] and x[]. 

OUTPUT: 2𝑙-length arrays t[] and u[]. 

/* Input arrays a[] and x[] should hold the coefficients of the radix-2𝑤 representation of operands 𝑎 and 𝑥 
respectively. Once computation finishes, output arrays t[] and u[] will hold the coefficients of 𝑡 = 𝑎2 and 
𝑢 = 𝑥2 in radix-2𝑤 representation. */ 

1. for 𝑖 = 0 to 𝑙 − 1 do 
2.     neon_dual_mac(&t[i+i], &u[i+i], a[i], x[i]); 

3.     for 𝑗 = 𝑖 + 1 to 𝑙 − 1 do 
4.         neon_dual_sqr_mac2(&t[i+j], &u[i+j], a[j], x[j], a[i], x[i]); 
5.     end 

6. end 

 

Before closing this section, it is worthwhile to point out a situation that sometimes arises in the point arithmetic formulas. 

Until now we have only considered to pair multiplications and squarings separately. This required us to group in pairs either 

multiplications or squarings to later perform them simultaneously. Such a thing is sometimes just impossible. However, it 

could be the case that one unpaired multiplication can be performed in parallel with an unpaired squaring. In such situation it 

is advantageous to consider a squaring as a simple multiplication and then execute it as part of a dual NEON-based 

multiplication.  
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4.2.- APPLYING DUAL OPERATIONS IN POINT ARITHMETIC OVER 𝔽𝒑𝟐 
We found interesting to devote this section to evaluate the impact of dual NEON-based operations on the performance of 

elliptic curve arithmetic over 𝔽𝑝2. Elliptic curves over 𝔽𝑝2 are widely used in pairing-based cryptography. For example, when 

computing the optimal Ate pairing over Barreto-Naehrig (BN) pairing-friendly elliptic curves [30], most of the pairing 

computation is performed on the degree-2 field extension 𝔽𝑝2, since, even when BN-curves come equipped with an 

embedding degree 𝑘 = 12 they admit a sextic twist allowing to move computation from 𝔽𝑝12 to 𝔽𝑝2 [31,32].  

Point addition and doubling formulas in 𝔽𝑝2 are the same as those for 𝔽𝑝. Indeed, recall from Section 3 that elliptic curves 

were defined over a generic finite field 𝔽𝑝𝑘. Precisely, it is the underlying field what changes now. When 𝑘 = 1 field elements 

were integers modulo 𝑝 and field operations were those defined in modular arithmetic. In particular, we paid attention to 

modular multiplication and modular squaring. Field elements in 𝔽𝑝2 are no longer integers, they are degree-1 polynomials 

(binomials) with coefficients in 𝔽𝑝. Consequently, field operations requiring our attention now are polynomial multiplication 

and squaring modulo an irreducible degree-2 polynomial [33]. 

 

4.2.1.- NEON-BASED 𝔽𝒑𝟐 MULTIPLICATION 
Dual NEON operations cannot be directly applied to point arithmetic in 𝔽𝑝2 to perform, for example, two simultaneous 

polynomial multiplications. Instead, NEON can be used to parallelize those 𝔽𝑝 operations involved inside 𝔽𝑝2 polynomial 

arithmetic. In this work 𝔽𝑝2 is built on top 𝔽𝑝 such that 𝔽𝑝2 = 𝔽𝑝[𝜇]/(𝜇2 + 1). The choice of 𝜇2 + 1 as irreducible 

polynomial is suggested in several pairing-related researches since it makes it possible to obtain field multiplication and 

squaring procedures that are more efficient than a generic polynomial multiplication or squaring followed by a polynomial 

reduction. See [34] for a detailed description on the topic of field extensions construction. 

Let 𝑎 = (𝑎1𝜇 + 𝑎0) and 𝑏 = (𝑏1𝜇 + 𝑏0) be two 𝔽𝑝2 elements with coefficients 𝑎0, 𝑎1, 𝑏0 and 𝑏1 in 𝔽𝑝. Equation (6) shows 

the Karatsuba-Ofman multiplication for binomials [35] already combined with reduction modulo 𝜇2 + 1 to compute the 

product 𝑐 = (𝑐1𝜇 + 𝑐0). Note that 𝔽𝑝 multiplications (𝑎1 ⋅ 𝑏1) and (𝑎0 ⋅ 𝑏0) act on independent data so they can be performed 

in parallel. 

 

 𝑐1 = (𝑎0 + 𝑎1) ⋅ (𝑏0 + 𝑏1) − [(𝑎1 ⋅ 𝑏1) + (𝑎0 ⋅ 𝑏0)]

𝑐0 = (𝑎0 ⋅ 𝑏0) − (𝑎1 ⋅ 𝑏1)
 (6) 

 

Algorithm 5 shows the resulting 𝔽𝑝2 multiplication procedure. The paired 𝔽𝑝 multiplications at step 1 are meant to be executed 

in parallel by means of the dual NEON-based modular multiplication algorithm discussed in Section 4.1.1. Therefore, a 

multiplication in 𝔽𝑝2 will have a cost of 1Md+1M. 

 
Algorithm 5 

Karatsuba-Ofman field multiplication in 𝔽𝒑𝟐 = 𝔽𝒑[𝝁]/(𝝁𝟐 + 𝟏) 

INPUT: 𝔽𝑝2 elements 𝑎 = (𝑎1𝜇 + 𝑎0), 𝑏 = (𝑏1𝜇 + 𝑏0). 

OUTPUT: 𝑐 = (𝑐1𝜇 + 𝑐0) = 𝑎 ⋅ 𝑏 

1. 𝛼1 = 𝑎1 ⋅ 𝑏1; 𝛼2 = 𝑎0 ⋅ 𝑏0; // Dual 𝔽𝒑 multiplication 

2. 𝛽1 = 𝑎0 + 𝑎1; 

3. 𝛽2 = 𝑏0 + 𝑏1; 

4. 𝛽1 = 𝛽1 ⋅ 𝛽2; // Single 𝔽𝒑 multiplication 

5. 𝛽1 = 𝛽1 − 𝑎1; 

6. 𝑐1 = 𝛽1 − 𝑎2; 

7. 𝑐0 = 𝛼2 − 𝑎1; 

 

Further refinements can be achieved by using the lazy reduction technique [36]. Allowing intermediate values to grow above 

the modulus, the number of Montgomery reductions can be decreased to only one at the end of the multiplication procedure. 

We followed two approaches to implement lazy reduction. When possible we selected the prime characteristic 𝑝 with a bit-
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length 𝑛 a few bits lower than 𝑁, where 𝑁 = 𝑙 ⋅ 𝑤 as in Section 4.1.1. Thus, intermediate values can grow above the modulus 

but residing within the boundary of the 𝑙-length or 2𝑙-length arrays used store them. Alternatively, when we were forced to 

use a prime characteristic 𝑝, such that 𝑛 = 𝑁, we added an extra 𝑤-bit location to store the extra bits resulting from multi-

precision multiplications and additions without interleaved reduction steps. In this case the Montgomery reduction itself 

needed to be modified by including an additional iteration responsible for handling this additional word. Consequently, the 

parameter 𝑅 has to be redefined as 𝑅 = 2(𝑁+𝑤) mod 𝑝. The penalty introduced by this extra iteration is widely mitigated by 

removing a full Montgomery reduction. 

Algorithm 6 shows the procedure for multiplications in 𝔽𝑝2 using lazy reduction. Observe that intermediate multiplications 

are conventional integer multiplications instead of field multiplications in 𝔽𝑝. Subtractions at steps 5, 6 and 7 are also ordinary 

multi-precision subtractions between integer numbers. Finally, observe that, as mentioned before, now it is only required a 

unique dual multi-precision Montgomery reduction. It is not difficult to see that this represents a time saving equivalent to a 

single multi-precision Montgomery reduction respect to Algorithm 5. Remember that multiplications in 𝔽𝑝 involve a reduction 

step, then 𝔽𝑝 multiplications at steps 1 and 4 of Algorithm 5 implicitly perform one dual and one single Montgomery reduction 

respectively. Precisely, the latter is the one that is saved. 

 

Algorithm 6 

Karatsuba-Ofman field multiplication in 𝔽𝒑𝟐 = 𝔽𝒑[𝝁]/(𝝁𝟐 + 𝟏) using lazy reduction 

INPUT: 𝔽𝑝2 elements 𝑎 = (𝑎1𝜇 + 𝑎0), 𝑏 = (𝑏1𝜇 + 𝑏0). 

OUTPUT: 𝑐 = (𝑐1𝜇 + 𝑐0) = 𝑎 ⋅ 𝑏 

1. 𝛼 = 𝑎0 + 𝑎1; 

2. 𝛽 = 𝑏0 + 𝑏1; 

3. 𝜔 = 𝛼 ⋅ 𝛽; // Multi-precision integer multiplication. 
4. 𝛼 = 𝑎1 ⋅ 𝑏1; 𝛽 = 𝑎0 ⋅ 𝑏0; // Dual multi-precision integer multiplication. 
5. 𝜔 = 𝜔 − 𝛼; 

6. 𝜔 = 𝜔 − 𝛽; 

7. 𝛽 = 𝛽 − 𝛼; 

8. 𝑐1 = 𝜔𝑅−1 mod 𝑝; 𝑐0 = 𝛽𝑅−1 mod 𝑝; // Dual multi-precision Montgomery reduction. 

 

4.2.2.- NEON-BASED 𝔽𝒑𝟐 SQUARING 
The Karatsuba-Ofman multiplication combined with reduction by 𝜇2 + 1 can also be adapted to perform squarings in 𝔽𝑝2. In 

this case the resulting formulas are quite simple compared to that of multiplication. As can be appreciated in equation (7) 

there is no opportunity nor is it necessary to take advantage from the lazy reduction technique. However, as Algorithm 7 

shows, multiplications 𝑎0 ⋅ 𝑎1 and (𝑎0 + 𝑎1) ⋅ (𝑎0 − 𝑎1) can be executed in parallel with a dual NEON-based 𝔽𝑝 

multiplication. 

 

 𝑐1 = 2 ⋅ 𝑎0 ⋅ 𝑎1

𝑐0 = (𝑎0 + 𝑎1) ⋅ (𝑎0 − 𝑎1)
 (7) 

 

Algorithm 7 

Karatsuba-Ofman field squaring in 𝔽𝒑𝟐 = 𝔽𝒑[𝝁]/(𝝁𝟐 + 𝟏) 

INPUT: 𝔽𝑝2 element 𝑎 = (𝑎1𝜇 + 𝑎0). 

OUTPUT: 𝑐 = (𝑐1𝜇 + 𝑐0) = 𝑎2
 

1. 𝛼 = 𝑎0 + 𝑎1; 

2. 𝛽 = 𝑎0 − 𝑎1; 

3. 𝑐1 = 𝑎1 ⋅ 𝑎0; 𝑐0 = 𝛼 ⋅ 𝛽; // Dual 𝔽𝑝 multiplication. 

4. 𝑐1 = 2 ⋅ 𝑐1; 
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5.- IMPLEMENTATION RESULTS 

This section evaluates the impact of the dual NEON-based finite field arithmetic on the performance of a software 

implementation of elliptic curve primitives. Experiments were carried out on the Xilinx XC7Z020 Zynq-7000 device. The 

XC7Z020 chip integrates a dual-core ARM Cortex-A9 processing system running at 667 MHz. Timing measurements were 

performed for the underlying finite field and the point arithmetic levels for both C and mixed C/NEON implementations. 

Average timing results for each operation were computed on the basis of 10000 independent runs of the operation under test. 

Timing samples were acquired by means of the Cortex-A9 64-bit global timer which is clocked at half of the processor’s 

frequency. Our choices of elliptic curves for experimentation were the BN-curves shown in Table 2. However, we point out 

that the NEON-based field arithmetic can be directly applied to any other elliptic curve. 

 

Table 2  

Elliptic curves used for experiments 

Curve 
Bit-length 

254 384 510 

𝐸(𝔽𝑝) 𝑦2 = 𝑥3 + 22 𝑦2 = 𝑥3 + 12 𝑦2 = 𝑥3 + 23 

𝐸(𝔽𝑝2) 𝑦2 = 𝑥3 + 22(𝜇 + 1)−1 𝑦2 = 𝑥3 + 12(𝜇 + 1)−5 𝑦2 = 𝑥3 + 23(𝜇 + 1)−1 

 

Table 3 presents the average execution times of the pure C and the mixed C/NEON variants of field multiplications (mul) and 

squarings (sqr) in both 𝔽𝑝 and 𝔽𝑝2 finite fields. The column “Factor” shows the speedup ratios achieved by the NEON-based 

implementations of the field arithmetic. In the particular case of 𝔽𝑝, this metric refers to the ratio between the running time 

of one dual NEON-based field multiplication or squaring and that of two consecutive calls to their corresponding single 

counterparts implemented in C (i.e., 1Md/2M). 

 

Table 3 

Timing performance of 𝔽𝒑 and 𝔽𝒑𝟐 arithmetic 

Field Bit-length Operation 
Timing (in 103 clock cycles) 

Factor 
C C/NEON 

𝔽𝑝 

254 
mul 3.2 3.8 0.59 

sqr 3 3.4 0.57 

384 
mul 7.4 8.5 0.57 

sqr 6.8 7.5 0.55 

510 
mul 12 13.8 0.58 

sqr 11.2 11.9 0.53 

𝔽𝑝2 

254 

mul 10.4 7.8 0.75 

mul-lr (*) 8.4 6.1 0.73 

sqr 6.8 4.2 0.62 

384 

mul 22.9 16.9 0.74 

mul-lr (*) 19.4 13.8 0.71 

sqr 15.3 9 0.59 

510 

mul 37 26.7 0.72 

mul-lr (*) 30.5 21.1 0.69 

sqr 24.6 14.5 0.59 

(*) In this context lr stands for lazy reduction. 
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As shown in Table 3, for the three bit-lengths considered in this work, performing two single 𝔽𝑝 multiplications is in average 

between 41% and 43% worse than performing one dual 𝔽𝑝 multiplication. The same occurs when comparing two singles 

against one dual 𝔽𝑝 squaring, where improvements between 43% and 47% are achieved. Also note that computing one dual 

𝔽𝑝 multiplication is between 39% and 41% faster than performing a single multiplication plus a single squaring in 𝔽𝑝, which 

confirms the premise postulated at the end of Section 4.1.2. Mixed C/NEON field arithmetic in 𝔽𝑝2 also exhibits better 

performance than its pure C counterpart, with improvements between 25% and 41% for both multiplications and squarings. 

In addition, Table 3 shows that NEON instructions together with lazy reduction produce the best results for 𝔽𝑝2 multiplications 

with speedups between 18% and 22% compared to not using lazy reduction. 

Let us now inspect the timing results of elliptic curve point arithmetic. Table 4 shows the values corresponding to point 

addition (Add) and point doubling (Dbl) on the elliptic curves over 𝔽𝑝. As expected, point arithmetic in affine coordinates 

exhibits the lowest performance because of the need for costly field inversions. In addition, 𝐸(𝔽𝑝) affine formulas do not 

have paired multiplications or squarings that can be performed simultaneously using the NEON engine. On the other hand, 

operations in standard and Jacobian coordinates take a great advantage from NEON-based 𝔽𝑝 arithmetic. Performance 

improvements achieved by the NEON-based elliptic curve operations with respect to those not using NEON are between 31% 

and 36% for a point doubling and between 36% and 39% for point additions in both Jacobian and standard coordinates.  

 

Table 4 

Timing performance of 𝑬(𝔽𝒑) point arithmetic 

Bit-length Coordinates Point operation 
Timing (in 103 clock cycles) Factor 

C C/NEON  

254 

Affine 
Add 123.9 − − 

Dbl 126.9 − − 

Standard 
Add 35.9 23 0.64 

Dbl 32.6 22.6 0.69 

Jacobian 
Add 35.5 22.7 0.64 

Dbl 22.8 15 0.66 

384 

Affine 
Add 266.1 − − 

Dbl 270.1 − − 

Standard 
Add 80.8 50.6 0.63 

Dbl 73.4 49.8 0.68 

Jacobian 
Add 80.9 50.1 0.62 

Dbl 50.8 32.7 0.64 

510 

Affine 
Add 446.4 − − 

Dbl 455 − − 

Standard 
Add 131.4 80.7 0.61 

Dbl 118.6 79.4 0.67 

Jacobian 
Add 130.8 80 0.61 

Dbl 82.5 51.5 0.62 

 

Timing results for point arithmetic on elliptic curves over 𝔽𝑝2 are collected in Table 5. These results correspond to the use of 

lazy reduction for the underlying 𝔽𝑝2 multiplications. The first lazy reduction approach mentioned in Section 4.2.1 was used 

in the 254-bit and 510-bit curves while for the 384-bit instance we used the second approach. In the case of point arithmetic 

over 𝔽𝑝2, even affine coordinates operations are benefited from using the NEON extension. Although affine formulas in 𝔽𝑝2 

do not present paired multiplications or squarings, the optimized NEON-based underlying 𝔽𝑝2 finite field operations 
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extrapolate their better performance up to the point arithmetic. Indeed, this argument is also valid for standard and Jacobian 

coordinates. Even when standard projective and Jacobian point arithmetic formulas have parallelizable multiplications and 

squarings, these operations in 𝔽𝑝2 could not be performed simultaneously using NEON. Doing that would require NEON 

instructions operating on 256-bit registers but the NEON engine works over 128-bit registers at most.  

Although affine operations experiment some speedup when using NEON-based 𝔽𝑝2 arithmetic, note that improvements are 

between 27% and 35% in both standard and Jacobian in contrast to a maximum of 13% achieved in affine coordinates. This 

is because affine formulas in 𝔽𝑝2 still require a costly field inversion which is replaced in standard and Jacobian coordinates 

by field multiplications and squarings that take advantages from the use of the NEON technology. 

 

Table 5  

Timing performance of 𝑬(𝔽𝒑𝟐) point arithmetic 

Bit-length Coordinates Point operation 
Timing (in 103 clock cycles) 

Factor 
C C/NEON 

254 

Affine 
Add 153 139.9 0.91 

Dbl 159 143.8 0.9 

Standard 
Add 91.4 66.4 0.73 

Dbl 80.4 56.9 0.71 

Jacobian 
Add 89.7 64.5 0.72 

Dbl 54.8 38 0.69 

384 

Affine 
Add 330.8 297.5 0.9 

Dbl 344.8 305.5 0.87 

Standard 
Add 208.5 145.3 0.7 

Dbl 181.6 122.4 0.67 

Jacobian 
Add 203.7 140.3 0.69 

Dbl 122.6 80.9 0.66 

510 

Affine 
Add 543.5 489.9 0.9 

Dbl 568.1 505.5 0.89 

Standard 
Add 327.3 222.9 0.68 

Dbl 285.3 189 0.66 

Jacobian 
Add 321.4 216.2 0.67 

Dbl 193.3 125 0.65 

 

Finally, Table 6 and Table 7 show the timings obtained for scalar multiplication in 𝐸(𝔽𝑝) and 𝐸(𝔽𝑝2) respectively. As 

expected, in all cases the best results come from the use of NEON instructions. It is also clear that the best options in terms 

of speed correspond to the mixed C/NEON scalar multiplications in Jacobian coordinates which exhibit improvements over 

the pure C implementations between 35% and 38% in the case of 𝐸(𝔽𝑝) and between 29% and 34% in the case of 𝐸(𝔽𝑝2). 
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Table 6 

Timing performance of scalar multiplication in 𝑬(𝔽𝒑) 

Bit-length Coordinates 
Timing (in 106 clock cycles) 

Factor 
C C/NEON 

254 

Affine 47.3 − − 

Standard 12.6 8.6 0.68 

Jacobian 10.1 6.6 0.65 

384 

Affine 147.4 − − 

Standard 41.4 27.2 0.66 

Jacobian 32.7 20.7 0.63 

510 

Affine 334.4 − − 

Standard 91.3 59.4 0.65 

Jacobian 72.7 45 0.62 

 

Table 7  

Timing performance of scalar multiplication in 𝑬(𝔽𝒑𝟐) 

Bit-length Coordinates 
Timing (in 106 clock cycles) 

Factor 
C C/NEON 

254 

Affine 58.9 53.6 0.91 

Standard 31.5 22.6 0.72 

Jacobian 24.9 17.6 0.71 

384 

Affine 185.2 165.5 0.89 

Standard 103.5 71 0.69 

Jacobian 80.8 54.5 0.67 

510 

Affine 415 373.8 0.9 

Standard 222.1 148.5 0.67 

Jacobian 174 114.5 0.66 

 

5.1.- COMPARISON WITH RELATED WORKS 

Even when the goal of most works summarized in Section 2 was to accelerate elliptic curve arithmetic by using NEON 

vectorization, the choices for curves, underlying fields, point arithmetic formulas and scalar representations were quite 

diverse. Such different choices have a direct impact in the resulting performance. Therefore, it is very difficult to establish a 

fear comparison to evaluate only the influence of the NEON-based approach employed by each of those researches. The 

parameters setup closer to our settings is that of [11]. Consequently, our implementation timings of NEON-based finite field 

and point arithmetic are compared against their results in Table 8. Comparison only involves curve arithmetic in Jacobian 

coordinates since this was the point representation considered in that work.  
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Table 8  

Results comparison for finite field and elliptic curve arithmetic 

Work Implementation 
Bit-

length 

Timing (in 103 clock cycles) 

𝔽𝑝 𝐸(𝔽𝑝) 𝔽𝑝2 𝐸(𝔽𝑝2) 

mul sqr Add Dbl [𝑠]𝑃 mul sqr Add Dbl [𝑠]𝑃 

[11]a NEON  

(fixed length) 
254 − − − − 1698 2.29 2.00 − − 2933 

This 

 workb 

Mixed 

C/NEON 

 (scalable) 

254 3.8* 3.4* 22.7 15 6592 6.1 4.2 64.5 38 17551 

384 8.5* 7.5* 50.1 32.7 20710 13.8 9 140.3 80.9 54489 

510 13.8* 11.9* 80 51.5 44939 21.1 14.5 216.2 125 114537 

a. Galaxy Note (ARM v7) Exynos 4 Cortex-A9 at 1.4 GHz. 

b. Zynq ZC7Z020 (ARM v7) Cortex-A9 at 667 MHz. 

* Refers to dual 𝔽𝑝 multiplications and squarings timings. 

 

As shown in Table 8 our mixed C/NEON scalar multiplication in 𝐸(𝔽𝑝) is 74% slower and in 𝐸(𝔽𝑝2) a 83% slower. There 

are two factors contributing to these results. Firstly, the 2-dimensional and 4-dimensional GLV [37] scalar multiplications 

used in [11] for 𝐸(𝔽𝑝) and for 𝐸(𝔽𝑝2) respectively, which are more efficient than the simpler binary left-to-right strategy 

used in this work. In second place is the fact that the flexibility provided by our library in terms of scalability comes at the 

cost of a significant performance loss respect to implementations optimized for a specific bit-length. Note that our mixed 

C/NEON implementation of 𝔽𝑝2 arithmetic is a 62% slower in the case of multiplications and a 52% slower in the case of 

squarings. To stress this argument, we ran a quick experiment in which we built multiplication, squaring and modular 

reduction primitives optimized for 254-bit parameters by unrolling the nested loops of our mixed C/NEON implementations 

and replicating as needed the NEON arithmetic kernels described in sections 4.1.1 and 4.1.2. As a result we obtained average 

running times of 1.58 × 103 and 1.5 × 103 clock cycles for 𝔽𝑝2 multiplications and squarings respectively. These metrics 

are about 31% and 25% faster than their homologous from [11]. 

 

6.- CONCLUSIONS 

Achieving implementations of cryptographic primitives with a good performance is crucial to ensure a smooth end-user 

experience. This is especially relevant in the context of embedded solutions where the processing resources are somewhat 

limited when compared to that of modern general-purpose computers. Then, taking advantages of any platform specific feature 

providing support for acceleration could be determinant. Accordingly, this work evaluated the use of the NEON instruction 

set of ARM Cortex-A processors to speed up elliptic curve arithmetic. We followed the approach of parallelizing the 

underlying finite field operations using NEON instructions since we observed that elliptic curve point arithmetic formulas, 

especially in projective coordinates, involve several field multiplications and squarings that can be executed simultaneously. 

After implementing such NEON-based field operations, it was shown that using them in the context of elliptic curves boosted 

up the performance of scalar multiplication between 35% and 38% in 𝐸(𝔽𝑝) and between 29% and 34% in 𝐸(𝔽𝑝2) compared 

to their equivalent baseline implementations coded in C. Such improvements were obtained in standard and Jacobian 

coordinates. However, this was not the case for the implementations in affine coordinates in which there were at most a 13% 

of speedup in scalar point multiplications in 𝐸(𝔽𝑝2) and no speedup at all in 𝐸(𝔽𝑝). A costly field inversion together with 

the lack of parallelizable multiplications and squarings prevented affine equations from behave better. Finally, we stress that 

even when our library is flexible enough in terms of scalability thanks to the mixed C/NEON approach followed in this work, 

it is not comparable in terms of performance with implementations optimized for a specific bit-length. That is, a mixed 

C/NEON approach similar to our proposal could be a successful alternative if the main goal is to build an easily scalable 

software implementation while taking, at the same time, some advantage from NEON vectorization to improve performance. 

However, if the priority is to further minimize running time, then a full NEON-based implementation optimized for a specific 

bit-length is a better choice. 
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