
RIELAC, Vol. XXXVIII 1/2017 p. 48-56 Enero – Abril  ISSN: 1815-5928 

 

Recibido: 11/10/2016    Aceptado:24/2/2017                                                                                                               

 

Nonlinear Model Predictive Control of a 

Passenger Vehicle for Automated Lane 

Changes 

Andrés F. Acosta Gil, Alejandro Márquez Ruíz, Jairo J. Espinosa 

 

ABSTRACT/RESUMEN 

This article presents a nonlinear Model Predictive Control (MPC) for lane changes, based on a simplified Single Track 

Model (STM) of the vehicle. The STM includes the position of the vehicle in global coordinates as a state so that the 

position of the target lane can be specified to the MPC for reference tracking. Moreover, a constraint for maintaining a 

safety distance with the vehicles in the target lane is included. Simulation results show the effectiveness of the MPC in 

scenarios with different initial conditions that demonstrate the correct implementation of the safety distance constraint.  

Keywords: Model Predictive Control, Single Track Model, Lane Change Control  

Este artículo presenta un esquema de Control Predictivo basado en Modelo (CPM) no lineal para cambios de carril, a 

partir de un modelo de una sola línea (MSL). El MSL incluye la posición del vehículo en coordenadas globales como un 

estado tal que la posición del carril de destino pueda ser especificada en el CPM para el seguimiento de la referencia. 

También se incluye una restricción para mantener una distancia de seguridad con los vehículos que se encuentran en el 

carril de destino. Los resultados de simulación muestran la efectividad del CPM en escenarios con diferentes 

condiciones iniciales que demuestran la correcta implementación de la restricción relacionada con la distancia. 

Palabras Claves: Control Predictivo basado en Modelo, Modelo de Seguimiento Individual, Control de cambio de carril 

Control Predictivo basado en modelo de un vehículo de pasajeros para cambios de carril automatizados 

 

1.-INTRODUCTION 
 

Lane changes are one of the main tasks of driving. They are performed for following the desired route (e.g. positioning the 

vehicle in the proper lane for a turn) or for increasing or lowering some desired speed, bypassing or letting pass vehicles in 

the source lane. There is an increasing interest in modeling and control for lane changes in autonomous vehicles in the last 

decades. Achieving an autonomous lane change can be a challenging task since it requires certain information related to the 

vehicle, the driver, the other vehicles interacting with him and the environment. Furthermore, lane change models are one of 

the most important components of microscopic traffic simulators. They can be divided into three main processes (1): the 

decision of changing a lane, the gap-acceptance process and the execution of the maneuver. Microscopic lane-change 

models have been widely studied in the first two processes. However, the execution of the maneuver is ignored in many 

traffic simulators, although several authors have been found that the duration of a lane change can affect the traffic flow in 

both the source and the destination lanes (2). On the other hand, the execution of the lane change maneuver is closely 

related to the dynamics of the vehicle, where many models can be found (3). These models are sometimes classified as 

submicroscopic models (4) and are extensively used in Advanced Driving Assistance Systems (ADAS) and autonomous 

vehicles applications.  
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A typical lane change, as described in (5), involves three vehicles: The subject vehicle, which is the vehicle that wants to 

perform the lane change; the lead vehicle, which is the vehicle positioned in front of the available gap in the target lane and 

the lag vehicle, which is the vehicle positioned in the back of the available gap. Figure 1 illustrates a typical Lane Change. 

Sen et al. (5) found that the majority of lane change crashes were caused by typical lane changes. Moreover, they found that 

9% of the total crashes were caused by lane changes involving two vehicles, where the main cause was that the subject 

vehicle could not see the Principal Other Vehicle (being the lead or the gap vehicle, depending on the degree of interaction). 

For this reason, research on Advanced Driving Assistance Systems (ADAS) and autonomous vehicles have received 

increasing attention in the last decades, resulting in improvements for vehicle safety systems, featuring high-accuracy 

sensors including radar, sonar, and GPS technologies. Furthermore, vehicles are incorporating advanced control systems 

supported by communication technologies such as Vehicle-to-Vehicle and Vehicle-to-Infrastructure (V2V and V2I). These 

advancements resulted in commercial applications and scientific prototypes with different levels of complexity, where the 

most common are described, as follows: 

 

 

 

Figure 1 

Typical Lane Change 

 

 Lane departure systems, whose main goal is to alert the driver if he/she is unintentionally deviating from the 

current lane, i.e. if the driver has not activated the turn signals. Note that this system does not automatically 

control the vehicle. In its most common form, the lane departure system includes an onboard camera, which is 

capable of detecting the lane markings and estimating the relative position of the vehicle with respect to them. 

 Lane keeping systems, which represents an improvement to the lane departure systems. In this case, the system 

controls the steering wheel to keep the vehicle in the center of the current lane. Like in the lane departure system, 

if the driver wants to make a lane change, he/she must activate the turn signal. 

 Lane changing assistants, whose main goal is to assist the driver to follow a desired lane change trajectory. 

 Fully automated lane change systems, used in autonomous vehicles to perform the lane change maneuver 

without the need of a driver. In this case, the vehicle is usually equipped with several sensing devices that allow it 

to identify obstacles and other vehicles and features a more complex control system including the steering wheel, 

accelerator, and brake pedals as inputs.  

Many control systems for lane changes are based on a dynamic model of the vehicle, being one of the most frequently used 

the Single Track Model (STM), which simplifies the structure of the vehicle, representing the front and rear tires as one. 

The STM has been used in successful applications such as reference trajectory generation and tracking (6), obstacle 

avoidance (7) and stabilization (8). However, some works assume predefined trajectories that do not consider constraints. 

On the other hand, the implementation details of many commercial applications remain as a trade secret. This article 

presents a nonlinear MPC based on a simplified STM and formulated for reference tracking in one of its states to achieve a 

lane change maneuver. Furthermore, the proposed MPC includes a constraint that considers vehicles in the destination lane 

to maintain a safe distance with them. This article is organized as follows: Section 2 describes the dynamic model of the 

vehicle. Section 3 explains the Model Predictive Control problem for lane changes. Section 4 introduces the constraint for 

including interaction with vehicles in the target lane. Section 5 shows simulation results. Finally, Section 6 concludes the 

article. 
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2.- VEHICLE MODEL 
Among the different dynamic vehicle models, the Single Track Model (STM) has been widely used mainly due to its 

simplicity and representativeness. The main assumption of this model, sometimes called bicycle model, is that the two front 

wheels and the two rear wheels are “collapsed” into one, as showed in Figure 2. 

 

 

Figure 2 

The Single Track Model 

 

Note that the STM considers a local coordinate system       , which is fixed in the vehicle and “travels” with it. 

Specifically, the origin of this coordinate system is placed in the center of mass of the vehicle  , the    axis is aligned with 

the longitudinal axis of the vehicle, and perpendicular to it is the    axis, which points in direction of the instantaneous 

turning center  . The dynamics of the vehicle given in the    axis are called longitudinal dynamics, while in the    axis are 

called lateral dynamics. In this case, the STM assumes that the vehicle moves at constant speed   ̇ , then only the lateral 

dynamics are considered. On the other hand, there is a global coordinate system      , whose origin is at the beginning of 

the street, assumed to be straight, where the    axis is aligned with the center of the departure lane. This global coordinate 

system is used for the specification of the heading angle of the vehicle   and the position of the center of the destination 

lane       , which is the reference value to be tracked by the MPC controller. In general, STM models can be classified as 

gray box models, they consist of a phenomenological nature, given by the fundamental laws of momentum conservation 

applied on the center of gravity  , and an empirical nature that describes the dynamics on the road-tire contact due to the 

complex structure of the latter. When the vehicle dynamics are considered on the local coordinate system, and it is assumed 

that the lateral forces acting on the tires are linear with some small angle approximations, the resulting STM is linear, as 

showed in equation (1), with a state vector given by the equation (2). The unidimensional input that determines the lateral 

dynamics is the front wheel steering angle  , which is defined as the angle between the    axis and the direction of the front 

wheel, as described by equation (3).  

  ̇        (1) 

 

   [       ̇   ̇]
 

 (2) 

 

     (3) 

Furthermore, according to the model described in (9), matrices   and   are defined as showed in equations (4) and (5). In 

this case, the linear STM assumes that the lateral forces acting on the front and rear wheels are proportional to their 

respective slip angles    and   , being the cornering stiffness     and     the proportionality constants. The slip angle is 

defined as the angle between the wheel and the direction of the speed vector on it. 

 

50 



Andrés F. Acosta Gil, Alejandro Márquez Ruíz, Jairo J. Espinosa 

RIELAC, Vol. XXXVIII 1/2017 p. 48-56 Enero - Abril ISSN: 1815-5928 

   

[
 
 
 
 
 
 
    
    

   
         

   ̇
   ̇  

            

   ̇

   
             

    ̇
 

      
        

 

    ̇ ]
 
 
 
 
 
 

 (4) 

 

   [    
    

 
 
      

  
]

 

 (5) 

In equations (4) and (5)   is the mass of the vehicle,    its yaw moment of inertia, i.e. the rotational inertia around the    
axis and    and    the distances from its center of mass   to the front and rear wheels, respectively. 

The differential equations (6) and (7) allow obtaining the position of the vehicle in global coordinates (10). 

  ̇    ̇    ( )    ̇    ( ) (6) 

 

  ̇    ̇    ( )    ̇    ( ) (7) 

The linear STM described above can be used in a state feedback or a Linear Quadratic Regulator (LQR) controller. 

However, a controller designed with a linear STM for lane changes would need to track an entire lane change trajectory, 

which can be designed based on equations (6) and (7). For simplifying this step, the approach proposed in this article 

consists on incorporating  ̇  and  ̇  as states (11), resulting in a nonlinear STM model as showed in equation (8) with a 

state vector defined by equation (9). With this approach, it is not necessary to specify the entire lane change trajectory, but 

the position of the center of the target lane, which is a constant parameter in a reference-tracking controller.  

  ̇   (   ) (8) 

 

   [       ̇   ̇      ]
 
 (9) 

3.- NONLINEAR MPC PROBLEM FOR LANE CHANGES 
Based on the nonlinear STM described in the previous section, the proposed MPC problem for achieving a lane change is 

showed in equation (10), where   is the prediction horizon given in number of samples and   and   are the tuning matrices 

of the controller. The MPC optimization is performed for every time step   and only the first obtained control action is 

applied to the vehicle, resulting in an iterative process known as receding horizon in MPC theory. The quadratic multi-

objective cost function of equation (10) is aimed to minimize the error between the output of the model  (   ) and its 

reference value     , and the control actions  (   ) required to perform the lane change along the entire prediction 

horizon. Equations (11) to (15) are the constraints of the optimization problem. These constraints include the discretized 

nonlinear STM given by equations (11) and (12) and two operational constraints related to the input and its rate of change in 

equations (13) and (14). The constraint (15) is used for maintaining a safety distance with the vehicles in the target lane, and 

is explained in the following section.  
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In this case, it is assumed that the position of the vehicle [     ]  can be measured directly. This is a reasonable 

assumption since there is an increasing number of vehicles equipped with high accuracy GPS devices. Thus, the 

measurement model and reference value are, as follows: 

  (   )    (   ) (16) 

 

             (17) 

 

4.- INTERACTION WITH VEHICLES IN THE TARGET LANE 
The MPC for lane changes includes the constraint given by equation (16) for considering the typical lane change scenario 

showed in figure 1. In order to explain this constraint, let us denote the subject vehicle with the super index   and the lead 

and lag vehicles with the super indexes     and    , as showed in Figure 3. 

 

 

Figure 3 

Notation for the position of vehicles involved in a lane change 

 

The position of the subject vehicle and the vehicles in the target lane can be written as: 

   
 (   )  [  

 (   )   
 (   )]
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(   )  [  
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(   )]

 
           (19) 

with    . Note that these equations imply the assumption that the subject vehicle can get the position of the lead and gap 

vehicles, which can be achieved through a Vehicle-to-Vehicle (V2V) communications system. Thus, the safety distance 

constraint is: 

     
 (   )       

            (20) 

where     (   ) is the Euclidean distance from the center of mass of the subject vehicle to the center of mass of the 

vehicle  , as showed in equation (22). 

     (   )  ‖  
 (   )    

 
(   )‖           (21) 

At this point, it is important to note that the subject vehicle has to predict the position of the vehicles in the target lane along 

the prediction horizon. While car-following models are the most suitable to this end, in this article the MPC uses a 

simplified model, with the assumption that the lead and lag vehicles do not interact with each other and move at a constant 

speed, this is: 

   
 (   )    

 ( )    ̇ 
 
           (22) 

 

   
 (   )                   (23) 

where  ̇ 
 

 is constant. 
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5.- SIMULATION RESULTS 

The MPC for lane changes described so far was implemented in Matlab®/Simulink®. Satisfactory results were obtained 

using the fmincon solver with Sequential Quadratic Programming (SQP). Simulation parameters are showed in Table 1, 

where the parameters of the vehicle are the same used by Rajamani (9), and the prediction horizon corresponds to 5 

seconds. This prediction horizon is, according to (2), in the range of a lane change duration. Note that situations, where the 

subject vehicle avoids the maneuver due to errors in the selection of the gap, are not considered. The values for     ,     , 

      and       were taken from (12). Finally, since the input ant the output are scalars, so are the tuning matrices   and 

 . The numerical solution of the STM was done at each simulation step using the stiff/NDF provided by the ODE15s 

solver. 

 

Parameter Value Units 

          

              

  ,                

   ,                   

  ̇           

             

     - 

         

    ,                         

     ,                            

            

     - 

    - 

Table 1 

Simulation parameters 

 

In a first experiment, the MPC problem was relaxed by ignoring the presence of vehicles in the target lane. Figure 1 shows 

the obtained control action, which is the front wheel steering angle, and the position of the vehicle in the    coordinate. The 

reference value is applied in     seconds and the vehicle arrives to the center of the target lane in 3.7 seconds. There is an 

overshoot with a maximum deviation from the center of the target lane of 0.44 meters, which does not represent a safety 

risk. The stabilization time is about 6.2 seconds. 

Figure 5 shows the obtained behavior of the constraint related to the rate of change of the input. Note that this lane change 

did not require the control action to achieve its maximum value, according to Figure 4 (a). On the other hand, the vehicle 

achieves the maximum rate of change of the input, as showed in Figure 5. 

A second experiment included the presence of the lead and gap vehicles, denoted with the super indexes 0 and 2, as showed 

in figure 6, where their initial positions and that of the subject vehicle are specified. Additionally, they and the subject 

vehicle move at the same speed i.e.  ̇ 
   ̇ 

          . In a final experiment, the MPC was stressed by changing the 

initial condition of the subject vehicle to [  
    

 ]  [   ] , in order to illustrate a case that violates the safety distance 

constraint,  

Figure 7 shows the control action and the position of the vehicle in the global coordinate    for the simulations including 

vehicles in the target lane with the initial conditions described above. In this case, when the initial position of the subject 

vehicle is [  
    

 ]  [   ] , the lane change is not possible because it would violate the safety distance constraint, 

colliding with the lag vehicle. In order to illustrate this point, the safety distance constraint was disabled and the distances 

between the subject vehicle and the lead and lag vehicles were computed, as showed in Figure 8. Note that, starting from 5 

seconds, the distance between the subject and the lag vehicles decreases below the safety distance.  
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(a) Front wheel steering angle 

 

(b) Position in the global coordinate    

Figure 4 

Simulation results without vehicles in the target lane  

 

 

Figure 5 

Constraint related to the maximum rate of change of the front wheel steering angle   , without vehicles in the target lane 

 

 

 

Figure 6 

Initial positions for the simulation including vehicles in the target lane 
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(a) Front wheel steering angle 

 

(b) Position in the global coordinate    

Figure 7 

Simulation results including vehicles in the target lane for different initial conditions on the subject vehicle 

 

 

Figure 8 

Distance between the subject vehicle and the lead and lag vehicles, disabling the safe distance constraint 

 

6.- CONCLUSIONS 

This article presented a nonlinear MPC for automated lane changes, based on a simplified Single Track Model (STM) of the 

vehicle. The MPC is a reference-tracking controller that incorporates the transformation from vehicle-local coordinates to 

global coordinates in the STM model so that the vehicle can follow the position of the center of the destination lane. 

Furthermore, the proposed MPC includes a constraint for maintaining a safety distance with the vehicles in the target lane, 

assuming a simplified model for predicting their positions. Simulation results showed the effectiveness of the automated 

lane change system in several experiments, including a typical lane change scenario with two vehicles in the target lane. 

Future work will focus on modeling the longitudinal dynamics of the vehicle and including the throttle and brake pedal as 

inputs to the MPC.  
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