Application of Genetic Algorithms for Parameter Estimation in Liquid Chromatography

Reynier Hernández Torres, Mirtha Irizar Mesa, LeôncioDiogenes TavaresCâmara, Antônio José da Silva Neto, Orestes Llanes Santiago

Resumen


In chromatography, complex inverse problems related to the parameters estimation and process optimization are presented.

Metaheuristics methods are known as general purpose approximated algorithms which seek and hopefully find good solutions at a reasonable computational cost. These methods are iterative process to perform a robust search of a solution space.

Genetic algorithms are optimization techniques based on the principles of genetics and natural selection. They have demonstrated very good performance as global optimizers in many types of applications, including inverse problems.

In this work, the effectiveness of genetic algorithms is investigated to estimate parameters in liquid chromatography.


Texto completo:

PDF


Facultad de Ingeniería Automática y Biomédica, Universidad Tecnológica de La Habana  José Antonio Echeverría, Cujae, Calle 114 No. 11901. e/ Ciclovía y Rotonda. Marianao 15.
La Habana, Cuba. CP 19390. Telf: (537) 266 3476
E-mail: rielac@tesla.cujae.edu.cu | URL: http://rielac.cujae.edu.cu
ISSN: 1815-5928

Todo el contenido de la revista se encuentra bajo la licencia https://creativecommons.org/licenses/by/4.0/deed.es_ES. La revista en línea tiene acceso abierto y gratuito