Propuesta para la monitorización de estados de sedación en señales electroencefalográficas

Tahimy González Rubio, Jorge Luis Drullet Ferrer, Yissel Rodríguez Aldana, Enrique Juan Marañón Reyes, Arquímedes Montoya Pedrón

Resumen


Durante un procedimiento quirúrgico es esencial inducir al paciente estados de inconsciencia, amnesia, analgesia y relajación muscular, sin embargo, debido a la inexactitud en la monitorización de la anestesia  se reportan casos de despertar intraoperatorio. A causa de la incidencia de este fenómeno, el Centro de Estudios de Neurociencias, Procesamiento de Imágenes y Señales en la Universidad de Oriente, Cuba, lleva a cabo la implementación de un prototipo de monitor de anestesia basado en el reconocimiento automático de estados de sedación en las señales electroencefalográficas usando técnicas de Inteligencia Artificial. Para alcanzar el objetivo propuesto se evaluó el desempeño de un clasificador Naive Bayes y tres Máquinas de Aprendizaje: Redes Neuronales Artificiales con cinco topologías diferentes, Sistemas de Inferencia Difusa basada en Redes Adaptativas y las Máquinas de Soporte Vectorial para reconocer tres estados de sedación caracterizados por nueve parámetros de potencia obtenidos a partir del espectro de frecuencia de las señales registradas por los canales electroencefalográficos frontales F4 y Fz. Como resultados de los experimentos se reconocieron los estados de Sedación Profunda, Sedación Moderada y Sedación Ligera con una Exactitud de 96.12%, 90.06% y 90.24% respectivamente usando las Máquinas de Soporte Vectorial y los registros del canal electroencefalográfico F4.



Palabras clave


Máquinas de Aprendizaje; Estados de Sedación; Señales Electroencefalográficas

Texto completo:

PDF


Facultad de Ingeniería Automática y Biomédica, Universidad Tecnológica de La Habana  José Antonio Echeverría, Cujae, Calle 114 No. 11901. e/ Ciclovía y Rotonda. Marianao 15.
La Habana, Cuba. CP 19390. Telf: (537) 266 3476
E-mail: rielac@tesla.cujae.edu.cu | URL: http://rielac.cujae.edu.cu
ISSN: 1815-5928

Todo el contenido de la revista se encuentra bajo la licencia https://creativecommons.org/licenses/by/4.0/deed.es_ES. La revista en línea tiene acceso abierto y gratuito